Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-bạn tự lập bảng nhé
a, \(3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
b, \(\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\Rightarrow n-3\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
n-3 | 1 | -1 | 11 | -11 |
n | 4 | 2 | 14 | -8 |
c, \(\dfrac{3n}{n+2}=\dfrac{3\left(n+2\right)-6}{n+2}=3-\dfrac{6}{n+2}\Rightarrow n+2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
a) \(A=\frac{n-4}{n+3}\left(n\in Z\right)\)
\(A=\frac{\left(n+3\right)-7}{n+3}\)
\(\Rightarrow\left(n+3\right)\inƯ_{\left(7\right)}=\left\{-7;-1;1;7\right\}\)
Lập bảng tìm n:
n+3 | -7 | -1 | 1 | 7 |
n | -10 | -4 | -2 | 4 |
Thỏa mãn | TM | TM | TM | TM |
Vậy \(n\in\left\{-10;-4;-2;4\right\}\)để \(A\in Z\)
b) \(B=\frac{3n-7}{2n+3}\left(n\in Z\right)\)
\(B=\frac{\left(3n+3\right)-10}{2n+3}\)
\(\Rightarrow2n+3\inƯ_{10}=\left\{-10;-5;-2;-1;1;2;5;10\right\}\)
Lập bảng tìm n:
2n+3 | -10 | -5 | -2 | -1 | 1 | 2 | 5 | 10 |
n | -6,5 | -4 | -2,5 | -2 | -1 | -0,5 | 4 | 6,5 |
Thỏa mãn | loại | TM | loại | TM | TM | loại | TM | loại |
Vậy \(n\in\left\{-4;-2;-1;4\right\}\)để \(A\in Z\)
a: A nguyên
=>3n-1 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
=>n thuộc {2/3;0;1;-1/3;4/3;-2/3;5/3;-1;7/3;-5/3;13/3;-11/3}
b: B nguyên
=>2n+3 chia hết cho 7
=>2n+3=7k(k\(\in Z\))
=>\(n=\dfrac{7k-3}{2}\left(k\in Z\right)\)
c: C nguyên
=>2n+5 chia hết cho n-3
=>2n-6+11 chia hết cho n-3
=>n-3 thuộc {1;-1;11;-11}
=>n thuộc {4;2;12;-8}
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1 = - 1 => n = 0
- Nếu n - 1 = 1 => n = 2
- Nếu n -1 = 5 => n = 6
Vậy n thuộc -4 ;0 ;2 ; 6
Để (3n+2)/(n-1) là số nguyên
=> 3n+2 chia hết cho n-1
=> (3n-3)+3+2 chia hết cho n-1
=>3(n-1)+5 chia hết cho n-1
Vì 3(n-1) chia hết cho n-1 nên 5 chia hết cho n-1
=> n-1 thuộc Ư(5)={-5;-1;1;5}
- Nếu n-1=-5 => n=-4
- Nếu n-1 = - 1 => n = 0
- Nếu n - 1 = 1 => n = 2
- Nếu n -1 = 5 => n = 6
Vậy n thuộc -4 ;0 ;2 ; 6
a) ĐKXĐ: \(n\ne3\)
Để phân số \(A=\dfrac{n-5}{n-3}\) là số nguyên thì \(n-5⋮n-3\)
\(\Leftrightarrow n-3-2⋮n-3\)
mà \(n-3⋮n-3\)
nên \(-2⋮n-3\)
\(\Leftrightarrow n-3\inƯ\left(-2\right)\)
\(\Leftrightarrow n-3\in\left\{1;-1;2;-2\right\}\)
hay \(n\in\left\{4;2;5;1\right\}\)
Vậy: \(n\in\left\{4;2;5;1\right\}\)
Bảo Ngọc Đàm Giải thì giải hết cho người ta chứ -.-
Tiếp ý b)
\(A=\frac{2n+3}{n-1}\)
Ta có : \(\frac{2n+3}{n-1}=\frac{2\left(n-1\right)+5}{n-1}=2+\frac{5}{n-1}\)
Để A có giá trị nguyên => \(\frac{5}{n-1}\)có giá trị nguyên
=> \(5⋮n-1\)
=> \(n-1\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
Ta có bảng sau :
n-1 | 1 | -1 | 5 | -5 |
n | 2 | 0 | 6 | -4 |
Vậy n thuộc { -4 ; 0 ; 2 ; 6 } thì A có giá trị nguyên
a) \(\frac{3n-1}{n+2}\left(n\ne-2\right)=\frac{3\left(n+2\right)-7}{n+2}=3-\frac{7}{n+2}\)
=> 7 chia hết cho n+2
=> n+2=Ư(7)={-7;-1;1;7}
tự lập bảng giái tiêp
b) làm tương tự
a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)
hay \(n\in\left\{0;1\right\}\)
c: Để C nguyên thì \(n+3⋮2n-1\)
\(\Leftrightarrow2n+6⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)