K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2017

bn xem lại điều kiện 

J
26 tháng 4 2017

cái này tôi nháp nhiều lần rồi, với lại đây là đề thi hsg mà, k sai đc đâu

21 tháng 4 2016

x^2 + y^2 +z^2 =xy+yz+zx 

=> x^2 + y^2 +z^2-xy-yz-zx=0

2x^2 + 2y^2 + 2z^2 - 2xy-2yz-2zx=0

(x-y)^2 + (y-z)^2 + (z-x)^2=0

=> x=y=z (x;y;z >0)

=> 3.x^2014=3.y^2014=3.z^2014=3

x^2014=y^2014=z^2014=1

x=y=z=1 

tự tính P nha

25 tháng 3 2022

Tham khảo:

https://hoc24.vn/cau-hoi/cho-hai-so-xy-thoa-man-x-y-cmr-x2-y2-le-x4-y4.628714996213

9 tháng 12 2017

sai/sai đề thì phải

22 tháng 2 2020

Áp dụng bđt Cauchy - Schwarz dạng Engel, ta được:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{\left(1+1\right)^2}{x+y}=\frac{4}{x+y}\)

Dấu "=" xảy ra khi \(x=y=\frac{1}{2}\)

22 tháng 2 2020

Thật ra bài này không cần điều kiện \(x+y\le1\)thì \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)vẫn đúng với x,y dương và x = y.

Mình nghĩ nên chứng minh \(\frac{1}{x}+\frac{1}{y}\ge4\)thì điều kiện \(x+y\le1\) sẽ có nghĩa!