K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3x^2+3y^2+4xy-2x+2y+2=0

=>2x^2+4xy+2y^2+x^2-2x+1+y^2+2y+1=0

=>x=1 và y=-1

M=(1-1)^2017+(1-2)^2018+(-1+1)^2015=1

7 tháng 1 2021

2x2 + 2y2 + 3xy - x + y + 1 = 0

2x2 + 2y2 + 4xy - xy - x + y + 1 = 0

(2x2 + 2y2 + 4xy) + (-xy - x) + (y + 1) = 0

2(x + y)2 - x(y + 1) + (y + 1) = 0

2(x + y)2 + (y + 1)(1 - x) = 0

Do (x + y)2 \(\ge0\)

\(\Rightarrow\) 2(x + y)2 \(\ge0\)

\(\Rightarrow\) 2(x + y)2 + (y + 1)(1 - x) = 0 \(\Leftrightarrow\) (y + 1)(1 - x) = 0

\(\Rightarrow y+1=0;1-x=0\)

*) y + 1 = 0

y = -1

*) 1 - x = 0

x = 1

Với x = 1; y = -1, ta có:

B = [1 + (-1)]2018 + (1 - 2)2018 + (-1 - 1)2018

= 1 + 22018

15 tháng 12 2016

bạn làm được chưa biết chỉ mình vs nhékhocroikhocroi

15 tháng 12 2016

sao giống câu hỏi của mình thế chỉ khác số bạn biết làm ko chỉ mình đikhocroikhocroi

23 tháng 7 2021

     \(5x2+5y2+8xy-2x+2y+2=0\) 

(=) \((4x^2 + 8xy + 4y^2) + (x^2 - 2x +1) + (y^2 + 2y +1) = 0 \)

(=) \(4(x+y)^2 + (x-1)^2 + (y+1)^2 = 0 \)

Ta có \(\begin{cases} 4(x+y)^2 ≥ 0 \\ (x-1)^2 ≥ 0 \\ (y+1)^2 ≥ 0 \end{cases} \)

=> \(4(x+y)^2 + (x-1)^2 + (y+1)^2 ≥ 0 \)

Vậy để \(4(x+y)^2 + (x-1)^2 + (y+1)^2 = 0 \)

(=) \(\begin{cases} 4(x+y)^2 = 0 \\ (x-1)^2 = 0 \\ (y+1)^2 = 0 \end{cases} \)

(=) \(\begin{cases} x = -y \\ x = 1 \\ y = -1 \end{cases} \)

(=) \(\begin{cases} x = 1 \\ y = -1 \end{cases} \)

Vậy \(M=(x+y)^{2015}+(x-2)^{2016}+(y+1)^{2017} M=(1-1)^{2015} + (1-2)^{2016} + (-1+1)^{2017} M=0^{2015} + (-1)^{2016} +0^{2017} M= 1 \)Vậy M = 1

 

Ta có: \(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow x^2+2x+1+y^2-2y+1+2x^2+4xy+2y^2=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x^2+2xy+y^2\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2=0\)

Ta có: \(\left(x+1\right)^2\ge0\forall x\)

\(\left(y-1\right)^2\ge0\forall y\)

\(2\left(x+y\right)^2\ge0\forall x,y\)

Do đó: \(\left(x+1\right)^2+\left(y-1\right)^2+2\left(x+y\right)^2\ge0\forall x,y\)

Dấu '=' xảy ra khi 

\(\left\{{}\begin{matrix}x+1=0\\y-1=0\\x+y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\\-1+1=0\left(đúng\right)\end{matrix}\right.\)

Thay x=-1 và y=1 vào biểu thức \(M=\left(x+y\right)^{2016}+\left(x+2\right)^{2017}+\left(y-1\right)^{2018}\), ta được: 

\(M=\left(-1+1\right)^{2016}+\left(-1+2\right)^{2017}+\left(1-1\right)^{2018}\)

\(=0^{2016}+1^{2017}+0^{2018}=1\)

Vậy: M=1

1 tháng 3 2022

Tham khảo:

undefined

CHÚC EM HỌC TỐT NHÁ hehe

29 tháng 8 2023

a) \(P=3\left(x^2+2xy+y^2\right)-2\left(x+y\right)-100\)

\(P=3\left(x+y\right)^2-2.5-100\)

\(P=3.5^2-110\)

\(P=-35\)

b) \(Q=\left[x^3+y^3+3xy\left(x+y\right)\right]-2\left(x^2+2xy+y^2\right)+3.5+10\)

\(Q=\left(x+y\right)^3-2\left(x+y\right)^2+25\)

\(Q=5^3-2.5^2+25\)

\(Q=100\)