Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ xét /\ DEF cân tại D
=> DE = DF (t/c /\ cân )
DI là trung tuyến
=> DI vuông với FE => DIE = 90* => DIF kề bù với DIE => DIF = 90* (1)
=> I là trung điểm EF
Xét /\ DIF và /\ DIE có :
DIF = DIE (cmt )
DF =DE (cmt)
IF = IE ( cmt )
=> /\ DIE = /\ DIF (c.g.c)
b/ (1) => DIE = DIF = 90*
=> 2 góc này là hai góc vuông
c/ chịu .
a: Xét ΔEDB vuông tại D và ΔEIB vuông tại I có
EB chung
góc DEB=góc IEB
=>ΔEDB=ΔEIB
b: Xét ΔBDH vuông tại D và ΔBIF vuông tại I có
BD=BI
góc DBH=góc IBF
=>ΔBDH=ΔBIF
=>BH=BF
=>ΔBHF cân tại B
Câu 1: giống bài vừa nãy t làm cho bạn rồi!
Câu 2:
vì 2 tam giác đó = nhau => KE=KF, mà DE=DF => DK là trung trực của EF (ĐPCM)
Câu 3 :
sửa đề chút nha : EF là tia phân giác góc DEH
ta có EH//DF => \(\widehat{DFE}=\widehat{FEH}\) (so lr trong)
mà 2 tam giác kia = nhau (câu a) =>\(\widehat{DFE}=\widehat{HEF}\)
=>\(\widehat{HEF}=\widehat{DEF}\) => EF là tia phân giác góc DEF (ĐPCM)
a) Xét ΔDEI và ΔDFI có
DE=DF(ΔDEF cân tại D)
DI chung
EI=FI(I là trung điểm của EF)
Do đó: ΔDEI=ΔDFI(c-c-c)
b) Ta có: I là trung điểm của EF(gt)
nên \(IE=IF=\dfrac{EF}{2}=\dfrac{10}{2}=5\left(cm\right)\)
Ta có: ΔDEI=ΔDFI(cmt)
nên \(\widehat{DIE}=\widehat{DIF}\)(hai góc tương ứng)
mà \(\widehat{DIE}+\widehat{DIF}=180^0\)(hai góc kề bù)
nên \(\widehat{DIE}=\widehat{DIF}=\dfrac{180^0}{2}=90^0\)
Áp dụng định lí Pytago vào ΔDEI vuông tại I, ta được:
\(DE^2=DI^2+IE^2\)
\(\Leftrightarrow DE^2=5^2+12^2=169\)
hay DE=13(cm)
a: Xét ΔDEM vuông tại D và ΔHEM vuông tại H có
EM chung
\(\widehat{DEM}=\widehat{HEM}\)
Do đó:ΔDEM=ΔHEM
b: Ta có: ΔDEM=ΔHEM
nên DE=HE; DM=HM
Ta có: DE=HE
nên E nằm trên đường trung trực của DH(1)
Ta có: MD=MH
nên M nằm trên đường trung trực của DH(2)
Từ (1) và (2) suy ra ME⊥DH
c: Xét ΔDMK vuông tại D và ΔHMF vuông tại H có
MD=MH
\(\widehat{DMK}=\widehat{HMF}\)
Do đó:ΔDMK=ΔHMF
Suy ra: DK=HF
Ta có: ED+DK=EK
EH+HF=EF
mà ED=EH
và DK=HF
nên EK=EF
hay ΔEKF cân tại E
a: Xét ΔDEH vuông tại E và ΔDIH vuông tại I có
DH chung
góc EDH=góc IDH
=>ΔDEH=ΔDIH
b: DE=DI
HE=HI
=>DH là trung trực của EI
c: EH=HI
HI<HF
=>EH<HF
d: Xét ΔDFK có
KI,.FE là đường cao
KI cắt FE tại H
=>H là trực tâm
=>DH vuông góc KF
a) Vì △DEF là tam giác cân nên DE = DF
Xét △DEI và△DFI có:
DE = DF
EI = IF
DI : cạnh chung
Suy ra △DEI = △DFI(c.c.c)
b) Vì △DEF là tam giác cân có đường trung tuyến DI
nên DI đồng thời là đường cao của △DEF
Suy ra \(\widehat{DIE}\) là góc vuông.
c) △DIE vuông tạ I có:
DE2 = DI2 + IE2 (định lí Pi-ta-go)
DE2 = 122 + 52
DE2 = 169
DE = \(\sqrt{169}\)= 13 (cm)
xét tam giác DIE và tam giác DIF có : DI chung
DE = DF do tam giác DEF cân tại D (Gt)
góc EDI = góc FDI do DI là phân giác
=> tam giác DIE = tam giác DEF (c-g-c)
vậy_
thu hiền còn câu b mới là vấn đề