Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{2}x^2-\left(-2+1\right)x+\dfrac{-2-1}{2}=0\)
\(\Rightarrow\dfrac{1}{2}x^2+x-\dfrac{3}{2}=0\)
Tới đây dùng \(\Delta\) chứ, nếu bn lấy \(\dfrac{1}{2}\) đặt lm nhân tử chung thì ở đây hơi vô lí
\(\left(m+1\right)x+\left(m-2\right)y=3\)\(\left(m\ne-1;m\ne2\right)\)
\(y=0\Leftrightarrow x=\dfrac{3}{m+1}\Rightarrow A\left(\dfrac{3}{m+1};0\right)\Rightarrow OA=\left|\dfrac{3}{m+1}\right|\)
\(x=0\Leftrightarrow y=\dfrac{3}{m-2}\Leftrightarrow B\left(0;\dfrac{3}{m-2}\right)\Rightarrow OB=\left|\dfrac{3}{m-2}\right|\)
\(S_{_{ }^{ }\Delta ABO}=\dfrac{9}{2}=\dfrac{1}{2}OA.OB=\dfrac{1}{2}.\dfrac{9}{\left|m+1\right|.\left|m-2\right|}\Leftrightarrow\dfrac{1}{\left|m+1\right|.\left|m-2\right|}=9\Leftrightarrow\left|m+1\right|.\left|m-2\right|=9\Leftrightarrow\left(m+1\right)^2.\left(m-2\right)^2-81=0\Leftrightarrow\left(m^2-m-11\right)\left(m^2-m+7\right)=0\Leftrightarrow\left[{}\begin{matrix}m^2-m-11=0\Leftrightarrow m=\dfrac{1\pm3\sqrt{5}}{2}\left(tm\right)\\m^2-m+7=0\left(vô-nghiệm\right)\end{matrix}\right.\)
\(\Rightarrow m=\dfrac{1\pm3\sqrt{5}}{2}\)
Cho x = 0 => \(y=\dfrac{3}{m-2}\)
vậy d cắt Oy tại A(0;3/m-2) => Oy = \(\left|\dfrac{3}{m-2}\right|\)
Cho y = 0 => \(x=\dfrac{3}{m+1}\)
vậy d cắt Ox tại B(3/m+1;0) => Ox = \(\left|\dfrac{3}{m+1}\right|\)
Ta có : \(S_{OAB}=\dfrac{1}{2}.OB.OA=\dfrac{1}{2}.\dfrac{9}{\left|\left(m+1\right)\left(m-2\right)\right|}=\dfrac{9}{2}\)
\(\Leftrightarrow\left|\left(m+1\right)\left(m-2\right)\right|=1\Leftrightarrow\left[{}\begin{matrix}m^2-m-3=0\\m^2-m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=\dfrac{1+\sqrt{13}}{2};m=\dfrac{1-\sqrt{13}}{2}\\m=\dfrac{1+\sqrt{5}}{2};m=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}\left(x+2\right)\left(y+3\right)-xy=100\\xy-\left(x-2\right)\left(y-2\right)=64\end{matrix}\right.\)
=>xy+3x+2y+6-xy=100 và xy-xy+2x+2y-4=64
=>3x+2y=94 và 2x+2y=68
=>x=26 và x+y=34
=>x=26 và y=8
b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3x+3+2}{x+1}-\dfrac{2}{y+4}=4\\\dfrac{2x+2-2}{x+1}-\dfrac{5y+20-11}{y+4}=9\end{matrix}\right.\)
=>\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x+1}-\dfrac{2}{y+4}=4-3=1\\\dfrac{-2}{x+1}+\dfrac{11}{y+4}=9+5-2=12\end{matrix}\right.\)
=>x+1=18/35; y+4=9/13
=>x=-17/35; y=-43/18
a,\(\left(\sqrt{1\dfrac{9}{16}}-\sqrt{\dfrac{9}{16}}\right):5=\left(\sqrt{\dfrac{25}{16}}-\dfrac{3}{4}\right):5=\left(\dfrac{5}{4}-\dfrac{3}{4}\right):5\)
\(=\dfrac{1}{2}:5=\dfrac{1}{10}\)
b,\(\left(\sqrt{3}-2\right)^2\left(\sqrt{3}+2\right)^2=\left[\left(\sqrt{3}-2\right)\left(\sqrt{3}+2\right)\right]^2\)
\(=\left[3-4\right]^2=1\)
c,\(\left(11-4\sqrt{3}\right)\left(11+4\sqrt{3}\right)=11^2-\left(4\sqrt{3}\right)^2\)
\(=121-48=73\)
d,\(\left(\sqrt{2}-1\right)^2-\dfrac{3}{2}\sqrt{\left(-2\right)^2}+\dfrac{4\sqrt{2}}{5}+\sqrt{1\dfrac{11}{25}}.\sqrt{2}\)
\(=2-2\sqrt{2}+1-3+\dfrac{4\sqrt{2}}{5}+\sqrt{\dfrac{36}{25}.2}\)
\(=-2\sqrt{2}+\dfrac{4\sqrt{2}+6\sqrt{2}}{5}\)
\(=-2\sqrt{2}+\dfrac{10\sqrt{2}}{5}=-2\sqrt{2}+2\sqrt{2}=0\)
e,\(\left(1+\sqrt{2021}\right)\sqrt{2022-2\sqrt{2021}}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{2021-2\sqrt{2021}.1+1}\)
\(=\left(1+\sqrt{2021}\right)\sqrt{\left(\sqrt{2021}-1\right)^2}\)
\(=\left(1+\sqrt{2021}\right)\left(\sqrt{2021}-1\right)\)
\(=\sqrt{2021}-1+\sqrt{2021^2}-\sqrt{2021}=2020\)
Xí câu BĐT:
ta cần chứng minh \(\dfrac{a^2}{b^2c}+\dfrac{b^2}{c^2a}+\dfrac{c^2}{a^2b}\ge\dfrac{ab+bc+ca}{abc}\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge ab+bc+ca\)
Áp dụng BĐT cauchy:
\(\dfrac{a^3}{b}+ab\ge2\sqrt{\dfrac{a^3}{b}.ab}=2a^2\)
tương tự ta có:\(\dfrac{b^3}{c}+bc\ge2b^2;\dfrac{c^3}{a}+ac\ge2c^2\)
cả 2 vế các BĐT đều dương,cộng vế với vế ta có:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}+ab+bc+ca\ge2a^2+2b^2+2c^2\)
\(\Leftrightarrow\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(a^2+b^2+c^2\right)-\left(ab+bc+ca\right)\)
mà a2+b2+c2\(\ge ab+bc+ca\) ( chứng minh đầy đủ nhá)
do đó \(S=\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}\ge2\left(ab+bc+ca\right)-ab+bc+ca=ab+bc+ca\)
suy ra BĐT ban đầu đúng
dấu = xảy ra khi và chỉ khi a=b=c.
P/s: cách khác :Áp dụng BĐT cauchy-schwarz:
\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\)
\(S\ge\dfrac{\left(ab+bc+ca\right)^2}{ab+bc+ca}=ab+bc+ca\)
Câu hệ này =))
b, Từ hệ đã cho ta thấy x,y > 0
Trừ vế cho vế pt (1) và (2) của hệ ta được:
\(x^4-y^4=4y-4x\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)=4\left(y-x\right)\)
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)+4\left(x-y\right)=0\)
\(\Leftrightarrow\left(x-y\right)\left[\left(x+y\right)\left(x^2+y^2\right)+4\right]=0\)
\(\Leftrightarrow x-y=0\) ( Vì \(\left(x+y\right)\left(x^2+y^2\right)+4>0\) với x,y > 0)
\(\Leftrightarrow x=y\)
Với x = y thay vào pt đầu của hệ ta được:
\(x^4-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow x-1=0\) ( Vì \(x^2+2x+3>0\) )
\(\Leftrightarrow x=1\)
Với x=1 suy ra y=1
Vậy hệ đã cho có nghiệm duy nhất (x;y) = (1;1)
d) Ta có: \(D=\left(\dfrac{5\sqrt{x}-6}{x-9}-\dfrac{2}{\sqrt{x}+3}\right):\left(1+\dfrac{6}{x-9}\right)\)
\(=\dfrac{5\sqrt{x}-6-2\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-9+6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{5\sqrt{x}-6-2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{x-3}\)
\(=\dfrac{3\sqrt{x}}{x-3}\)
f) Ta có: \(\left(\dfrac{3}{\sqrt{1+x}}+\sqrt{1-x}\right):\left(\dfrac{3}{\sqrt{1-x^2}}+1\right)\)
\(=\dfrac{3+\sqrt{1-x^2}}{\sqrt{1+x}}:\dfrac{3+\sqrt{1-x^2}}{\sqrt{1-x^2}}\)
\(=\dfrac{\sqrt{1-x^2}}{\sqrt{1+x}}=\sqrt{1-x}\)
Chọn B