Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cauchy-schwarz ta có
\(\dfrac{a+b}{ab+c^2}=\dfrac{\left(a+b\right)^2}{\left(ab+c^2\right)\left(a+b\right)}=\dfrac{\left(a+b\right)^2}{a^2b+ab^2+ac^2+bc^2}=\dfrac{\left(a+b\right)^2}{\left(ab^2+ac^2\right)+\left(a^2b+bc^2\right)}=\dfrac{\left(a+b\right)^2}{a\left(b^2+c^2\right)+b\left(a^2+c^2\right)}\le\dfrac{b^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{b\left(a^2+c^2\right)}\)Chứng minh tương tự:
\(\dfrac{b+c}{bc+a^2}\le\dfrac{c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{c\left(a^2+b^2\right)}\)
\(\dfrac{c+a}{ca+b^2}\le\dfrac{a^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{a\left(b^2+c^2\right)}\)
Cộng vế theo vế của các bđt trên ta được
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{b^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{a\left(b^2+c^2\right)}=\dfrac{b^2+c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2+c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2+a^2}{c\left(a^2+b^2\right)}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)Vậy \(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
bái tran nguyen bao quan làm sư phụ bài khó như vậy mà làm nhanh v:
Điều kiện: \(-\dfrac{65}{8}\le x\le2\)
\(1+8x+8^2=\sqrt{2-x}\\ \Rightarrow2-x=64x^2+1040x+4225\\ \Leftrightarrow64x^2+1041x+4223=0\\ \Leftrightarrow\left[{}\begin{matrix}x\simeq-7,735\\x\simeq-8,531\end{matrix}\right.\)
\(\dfrac{C}{2}=\dfrac{x}{\sqrt{4y}}+\dfrac{y}{\sqrt{4z}}+\dfrac{z}{\sqrt{4x}}\ge\dfrac{2x}{y+4}+\dfrac{2y}{z+4}+\dfrac{2z}{x+4}\)
\(\Rightarrow\dfrac{C}{4}\ge\dfrac{x}{y+4}+\dfrac{y}{z+4}+\dfrac{z}{x+4}=\dfrac{x^2}{xy+4x}+\dfrac{y^2}{yz+4y}+\dfrac{z^2}{zx+4z}\ge\dfrac{\left(x+y+z\right)^2}{\left(xy+yz+zx\right)+4\left(x+y+z\right)}\ge\dfrac{\left(x+y+z\right)^2}{\dfrac{\left(x+y+z\right)^2}{3}+4\left(x+y+z\right)}=\dfrac{3\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z+12\right)}=\dfrac{3\left(x+y+z\right)}{x+y+z+12}\ge\dfrac{3\left(x+y+z\right)}{x+y+z+x+y+z}=\dfrac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{3}{2}\)
\(\Rightarrow C\ge6\)
Dấu "=" xảy ra <=> x = y = z = 4
\(2.\)
Gọi số chi tiết máy mà tổ \(1\)và tổ \(2\) sản xuất được trong tháng đầu lần lượt là \(x\) và \(y\)
Điều kiện : \(x,y\inℕ^∗\) ; \(x,y< 900\)
Theo bài ta có phương trình :
\(\hept{\begin{cases}x+y=900\\1,1x+1,12y=1000\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=400\\y=500\end{cases}}\)
Vậy : Tháng đầu tổ \(1\) sản xuất được \(400\) chi tiết máy
Tháng đầu tổ \(2\) sản xuất được \(500\) chi tiết máy
a=b+1; b=c+1, do c>0 =>b-1>0
\(2\left(\sqrt{a}-\sqrt{b}\right)=2\dfrac{a-b}{\sqrt{a}+\sqrt{b}}=\dfrac{2}{\sqrt{b+1}+\sqrt{b}}< \dfrac{2}{2\sqrt{b}}=\dfrac{1}{\sqrt{b}}\)
\(2\left(\sqrt{b}-\sqrt{c}\right)=2\dfrac{b-c}{\sqrt{b}+\sqrt{c}}=\dfrac{2}{\sqrt{b}+\sqrt{b-1}}< \dfrac{2}{2\sqrt{b}}=\dfrac{1}{\sqrt{b}}\)
\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
congratulations
ăn ở tốt sẽ thấy câu trả lời xứng đáng nhận 3GP của tớ
ai xem xong mà không thấy thì cho xem cái tay
Nguyễn Thị Ngọc Thơ 1 bài cx hem bt làm nữa :(( Nhưng theo t bt thì bài 2 thay vào r thì AM-GM hay Cauchy-Schwarz khá đơn giản ^^
lm cho bài 2 nè
\(\dfrac{a}{ab+3c}+\dfrac{b}{bc+3a}+\dfrac{c}{ca+3b}=\dfrac{a}{ab+\left(a+b+c\right)c}+\dfrac{b}{bc+\left(a+b+c\right)a}+\dfrac{c}{ca+\left(a+b+c\right)b}\)
\(=\dfrac{a}{\left(b+c\right)\left(c+a\right)}+\dfrac{b}{\left(c+a\right)\left(a+b\right)}+\dfrac{c}{\left(a+b\right)\left(b+c\right)}\)
\(=\dfrac{a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+a^2+b^2+c^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\dfrac{\left(a+b+c\right)^2+\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)-3}{2\left[\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{3}\right]^3}\ge\dfrac{9+2a+2b+2c-3}{2.8}=\dfrac{12}{16}=\dfrac{3}{4}\)
dấu bằng xảy ra khi ...
1+1+1=3
bn là bn
tk cho mk nha!
cậu là anhthu bui nguyen
Cậu là cậu
1 + 1 + 1 = 3
Hok tốt !
#cute phô mai que#