Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt cauchy-schwarz ta có
\(\dfrac{a+b}{ab+c^2}=\dfrac{\left(a+b\right)^2}{\left(ab+c^2\right)\left(a+b\right)}=\dfrac{\left(a+b\right)^2}{a^2b+ab^2+ac^2+bc^2}=\dfrac{\left(a+b\right)^2}{\left(ab^2+ac^2\right)+\left(a^2b+bc^2\right)}=\dfrac{\left(a+b\right)^2}{a\left(b^2+c^2\right)+b\left(a^2+c^2\right)}\le\dfrac{b^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{b\left(a^2+c^2\right)}\)Chứng minh tương tự:
\(\dfrac{b+c}{bc+a^2}\le\dfrac{c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{c\left(a^2+b^2\right)}\)
\(\dfrac{c+a}{ca+b^2}\le\dfrac{a^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{a\left(b^2+c^2\right)}\)
Cộng vế theo vế của các bđt trên ta được
\(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{b^2}{a\left(b^2+c^2\right)}+\dfrac{a^2}{b\left(a^2+c^2\right)}+\dfrac{c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2}{c\left(a^2+b^2\right)}+\dfrac{a^2}{c\left(a^2+b^2\right)}+\dfrac{c^2}{a\left(b^2+c^2\right)}=\dfrac{b^2+c^2}{a\left(b^2+c^2\right)}+\dfrac{a^2+c^2}{b\left(a^2+c^2\right)}+\dfrac{b^2+a^2}{c\left(a^2+b^2\right)}=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)Vậy \(\dfrac{a+b}{ab+c^2}+\dfrac{b+c}{bc+a^2}+\dfrac{c+a}{ca+b^2}\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
bái tran nguyen bao quan làm sư phụ bài khó như vậy mà làm nhanh v:
\(P=\sum\dfrac{2a^3}{a+4b}+\sum\dfrac{3b^3}{a+4b}=2\sum\dfrac{a^4}{a^2+4ab}+3\sum\dfrac{b^4}{ba+4b^2}\)
Sử dụng BĐT Cauchy-Schwarz dạng Engel, ta có:
\(P\ge2\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+4\left(ab+bc+ca\right)}+3\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca+4\left(a^2+b^2+c^2\right)}\)
\(P\ge2\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+4\left(a^2+b^2+c^2\right)}+3\dfrac{\left(a^2+b^2+c^2\right)^2}{a^2+b^2+c^2+4\left(a^2+b^2+c^2\right)}=\dfrac{2\left(a^2+b^2+c^2\right)}{5}+\dfrac{3\left(a^2+b^2+c^2\right)}{5}\)
\(P\ge a^2+b^2+c^2\ge ab+bc+ca\ge6\)
GTNN của P là 6 khi \(a=b=c=\sqrt{2}\)
cái thể loại đi bình luận chửi dạo mới gọi là vừa lắm mồm vừa xàm :)
ai cũng có quyền nói, nói đúng thì không ai bảo gì đâu, nhưng mà, dell liên quan gì cũng thể hiện thì làm gì hơn ai :)
Sử dụng AM-GM, ta dễ dàng chứng minh được bất đẳng thức phụ sau:
\(\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\left(a^2b+b^2c+c^2a\right)\)
\(P=\sum\dfrac{a^4}{a^2b+2a^2c}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\sum a^2b+2\sum a^2c}\)
\(\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{\dfrac{\left(a^2+b^2+c^2\right)\sqrt{3\left(a^2+b^2+c^2\right)}}{3}+\dfrac{2\left(a^2+b^2+c^2\right)\sqrt{3\left(a^2+b^2+c^2\right)}}{3}}\)\(\ge1\)
GTNN là 1 khi \(a=b=c=\dfrac{1}{3}\)
\(\dfrac{C}{2}=\dfrac{x}{\sqrt{4y}}+\dfrac{y}{\sqrt{4z}}+\dfrac{z}{\sqrt{4x}}\ge\dfrac{2x}{y+4}+\dfrac{2y}{z+4}+\dfrac{2z}{x+4}\)
\(\Rightarrow\dfrac{C}{4}\ge\dfrac{x}{y+4}+\dfrac{y}{z+4}+\dfrac{z}{x+4}=\dfrac{x^2}{xy+4x}+\dfrac{y^2}{yz+4y}+\dfrac{z^2}{zx+4z}\ge\dfrac{\left(x+y+z\right)^2}{\left(xy+yz+zx\right)+4\left(x+y+z\right)}\ge\dfrac{\left(x+y+z\right)^2}{\dfrac{\left(x+y+z\right)^2}{3}+4\left(x+y+z\right)}=\dfrac{3\left(x+y+z\right)^2}{\left(x+y+z\right)\left(x+y+z+12\right)}=\dfrac{3\left(x+y+z\right)}{x+y+z+12}\ge\dfrac{3\left(x+y+z\right)}{x+y+z+x+y+z}=\dfrac{3\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{3}{2}\)
\(\Rightarrow C\ge6\)
Dấu "=" xảy ra <=> x = y = z = 4
a=b+1; b=c+1, do c>0 =>b-1>0
\(2\left(\sqrt{a}-\sqrt{b}\right)=2\dfrac{a-b}{\sqrt{a}+\sqrt{b}}=\dfrac{2}{\sqrt{b+1}+\sqrt{b}}< \dfrac{2}{2\sqrt{b}}=\dfrac{1}{\sqrt{b}}\)
\(2\left(\sqrt{b}-\sqrt{c}\right)=2\dfrac{b-c}{\sqrt{b}+\sqrt{c}}=\dfrac{2}{\sqrt{b}+\sqrt{b-1}}< \dfrac{2}{2\sqrt{b}}=\dfrac{1}{\sqrt{b}}\)
\(\Rightarrow2\left(\sqrt{a}-\sqrt{b}\right)< \dfrac{1}{\sqrt{b}}< 2\left(\sqrt{b}-\sqrt{c}\right)\)
congratulations
ăn ở tốt sẽ thấy câu trả lời xứng đáng nhận 3GP của tớ
ai xem xong mà không thấy thì cho xem cái tay
BĐT đã cho được viết lại thành
\(\sum \frac{ab}{c^{2}+8ab}\leq \frac{1}{3}<=>\sum \frac{8ab}{c^{2}+8ab}\leq \frac{8}{3}<=>\sum \frac{c^{2}}{c^{2}+8ab}\geq \frac{1}{3}\)Sử dụng BĐT Cauchy-Schwarz, ta có:
\(\sum \frac{c^{2}}{c^{2}+8ab}\geq \frac{(a+b+c)^{2}}{a^{2}+b^{2}+c^{2}+8ab+8bc+8ac}\geq \frac{(a+b+c)^{2}}{(a+b+c)^{2}+6(ab+bc+ac)}\geq \frac{(a+b+c)^{2}}{(a+b+c)^{2}+6.\frac{(a+b+c)^{2}}{3}}=\frac{1}{3}\)Hoàn tất chứng minh. Đẳng thức xảy ra khi \(a=b=c\)
\(2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}\) ( Svac-xơ, Cauchy các kiểu -,- )
\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\frac{4}{a+b}+\frac{4}{b+c}+\frac{4}{c+a}}{2}=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\) ( đpcm )
...
Anh Unruly Kid ơi cô em dạy là:
\(\dfrac{\dfrac{1}{2^2}.\dfrac{1}{2^2}}{\dfrac{1}{2^4}.\dfrac{1}{2^2}+\dfrac{1}{2^2}.\dfrac{1}{2^4}+\dfrac{1}{2^2}+\dfrac{1}{2^2}}=\dfrac{2}{17}\)
Chứ không phải \(\dfrac{1}{4}\)anh ơi.
Hung nguyen Em khong chu y dau bang nen sai mat roi, ti em sua lai
Nguyễn Thị Ngọc Thơ 1 bài cx hem bt làm nữa :(( Nhưng theo t bt thì bài 2 thay vào r thì AM-GM hay Cauchy-Schwarz khá đơn giản ^^
lm cho bài 2 nè
\(\dfrac{a}{ab+3c}+\dfrac{b}{bc+3a}+\dfrac{c}{ca+3b}=\dfrac{a}{ab+\left(a+b+c\right)c}+\dfrac{b}{bc+\left(a+b+c\right)a}+\dfrac{c}{ca+\left(a+b+c\right)b}\)
\(=\dfrac{a}{\left(b+c\right)\left(c+a\right)}+\dfrac{b}{\left(c+a\right)\left(a+b\right)}+\dfrac{c}{\left(a+b\right)\left(b+c\right)}\)
\(=\dfrac{a^2+b^2+c^2+ab+bc+ca}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
\(=\dfrac{\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+a^2+b^2+c^2}{2\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\dfrac{\left(a+b+c\right)^2+\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)-3}{2\left[\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{3}\right]^3}\ge\dfrac{9+2a+2b+2c-3}{2.8}=\dfrac{12}{16}=\dfrac{3}{4}\)
dấu bằng xảy ra khi ...