Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Số phần tử của không gian mẫu
Gọi biến cố A: “Chọn được 1 bạn nam và 1 bạn nữ để phân công trực nhật.”
Ta có
Vậy
Số cách chọn 2 nữ từ 9 nữ: \(C_9^2\)
Số cách chọn 3 nam từ 8 nam: \(C_8^2\)
Hoán vị 5 bạn: \(5!\)
Vậy có \(5!.C_9^2.C_8^2\) cách
a. Có \(C_6^3\) cách chọn 3 nam từ 6 nam
b.
Chọn 2 nam từ 6 nam và 3 nữ từ 9 nữ để lập tổ 1 có: \(C_6^2.C_9^3\) cách
Chọn 2 nam từ 4 nam còn lại và 3 nữ từ 6 nữ còn lại để lập tổ 2 có: \(C_4^2.C_6^3\) cách
Chọn 2 nam từ 2 nan còn lại và 3 nữ từ 3 nữ còn lại: \(C_2^2.C_3^3\) cách
\(\Rightarrow C_6^2.C_9^3+C_4^2.C_6^3+C_2^2.C_3^3\) cách thỏa mãn chia 3 tổ
a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :
\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách:
\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\) cách:
Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.
b) Nếu trong \(5\) học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :
\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.
\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.
Còn lại bn tự lm nha, mỏi tay quá
Không gian mẫu là chọn ngẫu nhiên 5 học sinh từ 12 học sinh.
Suy ra số phần tử của không gian mẫu là .
Gọi A là biến cố 5 học sinh được chọn có 3 học sinh nam và 2 học sinh nữ trong đó phải nhất thiết có bạn An hoặc bạn Hoa nhưng không có cả hai . Ta mô tả các trường hợp thuận lợi cho biến cố A như sau:
● Trường hợp 1. Có bạn An.
Chọn thêm 2 học sinh nam từ 6 học sinh nam, có cách.
Chọn 2 học sinh nữ từ 4 học sinh nữ (không chọn Hoa), có cách.
Do đó trường hợp này có cách.
● Trường hợp 2. Có bạn Hoa.
Chọn thêm 1 học sinh nữ từ 4 học sinh nam, có cách.
Chọn 3 học sinh nam từ 6 học sinh nam (không chọn An), có cách.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
Vậy xác suất cần tính
Chọn C.