K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2017

Không gian mẫu là chọn ngẫu nhiên 5 học sinh từ 12 học sinh.

Suy ra số phần tử của không gian mẫu là .

Gọi A là biến cố 5 học sinh được chọn có 3 học sinh nam và 2 học sinh nữ trong đó phải nhất thiết có bạn An hoặc bạn Hoa nhưng không có cả hai . Ta mô tả các trường hợp thuận lợi cho biến cố A  như sau:

●   Trường hợp 1. Có bạn An.

Chọn thêm 2 học sinh nam từ 6 học sinh nam, có  cách.

Chọn 2 học sinh nữ từ 4 học sinh nữ (không chọn Hoa), có  cách.

Do đó trường hợp này có  cách.

●   Trường hợp 2. Có bạn Hoa.

Chọn thêm 1 học sinh nữ từ 4 học sinh nam, có  cách.

Chọn 3 học sinh nam từ 6 học sinh nam (không chọn An), có  cách.

Do đó trường hợp này có  cách.

Suy ra số phần tử của biến cố  là 

Vậy xác suất cần tính 

Chọn C.

21 tháng 12 2022

`n(\Omega)=C_10 ^3`

Gọi `\overline A:"` Chọn `3` h/s mà trong đó không có h/s nữ`."`

  `=>n(\overline A)=C_7 ^3`

 `=>P(A)=1-[C_7 ^3]/[C_10 ^3]=17/24`

3 tháng 1 2017

Chọn C

Chọn mỗi tổ hai học sinh nên số phần tử của không gian mẫu là 

Gọi biến cố A: “Chọn 4 học sinh từ 2 tổ sao cho 4 em được chọn có 2 nam và 2 nữ”

Khi đó, xảy ra các trường hợp sau:

TH1: Chọn 2 nam ở Tổ 1, 2 nữ ở Tổ 2. Số cách chọn là

TH2:  Chọn 2 nữ ở Tổ 1, 2 nam ở Tổ 2. Số cách chọn là .

TH3: Chọn ở mỗi tổ 1 nam và 1 nữ. Số cách chọn là 

Suy ra, n(A) = 

Xác suất để xảy ra biến cố A là: 

15 tháng 4 2018


NV
10 tháng 3 2023

a. Có \(C_6^3\) cách chọn 3 nam từ 6 nam

b. 

Chọn 2 nam từ 6 nam và 3 nữ từ 9 nữ để lập tổ 1 có: \(C_6^2.C_9^3\) cách

Chọn 2 nam từ 4 nam còn lại và 3 nữ từ 6 nữ còn lại để lập tổ 2 có: \(C_4^2.C_6^3\) cách

Chọn 2 nam từ 2 nan còn lại và 3 nữ từ 3 nữ còn lại: \(C_2^2.C_3^3\) cách

\(\Rightarrow C_6^2.C_9^3+C_4^2.C_6^3+C_2^2.C_3^3\) cách thỏa mãn chia 3 tổ

14 tháng 2 2017

Đáp án D

Mỗi cách chọn là một tổ hợp chập 5 của 15 nên  

Số cách chọn là

 

Xác suất cần tìm là:

3 tháng 4 2018

Chọn D

Tổng số học sinh của tổ là: 5 + 7 = 12.

Số cách cách chọn 4 học sinh của tổ để tham ra một buổi lao động là tổ hợp chập 4 của 12 phần tử: C 4 12 .

15 tháng 5 2017

Đáp án C.

Số cách chọn 5 học sinh trong đó có cả nam lẫn nữ là:

12 tháng 6 2018

Đáp án C.

Phương pháp:

+) Chọn 2 học sinh nam.

+) Chọn 3 học sinh nữ.

+) Sử dụng quy tắc nhân.

Cách giải:

Số cách chọn 2 học sinh nam C 6 2  

Số cách chọn 3 học sinh nữ C 9 3  

Vậy số cách chọn 5 học sinh đi lao động trong đó có 2 học sinh nam là  C 6 2 . C 9 3 .