K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

5G= 1+1/5+1/5^2+.....+1/5^2007

4G=5G-G=(1+1/5+1/5^2+....+1/5^2007)-(1/5+1/5^2+1/5^3+....+1/5^2008)

              = 1 - 1/5^2008

=>G=(1-1/5^2008)/4

8 tháng 11 2017

\(G=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2008}}\)(1)

\(\Rightarrow5G=1+\frac{1}{5}+...+\frac{1}{5^{2007}}\)(2)

Lấy (2) trừ đi (1) ta có :

\(4G=1-\frac{1}{5^{2008}}\)

\(\Rightarrow G=\frac{\left(1-\frac{1}{5^{2008}}\right)}{4}\)

\(C=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{\frac{5}{2008}-\frac{5}{2009}-\frac{5}{2010}}+\frac{\frac{2}{2007}-\frac{2}{2008}-\frac{2}{2009}}{\frac{3}{2007}-\frac{3}{2008}-\frac{3}{2009}}\)

\(=\frac{\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}}{5.\left(\frac{1}{2008}-\frac{1}{2009}-\frac{1}{2010}\right)}+\frac{2.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}{3.\left(\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)}\)

\(=\frac{1}{5}+\frac{2}{3}\)

\(=\frac{13}{15}\)

23 tháng 10 2015

Đặt S=\(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2008}}\)

5S=\(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2007}}\)

5S-S=\(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2007}}\)-\(\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2008}}\right)\)

4S=\(1-\frac{1}{5^{2008}}\)

=> S=\(\frac{1-\frac{1}{5^{2008}}}{4}\)

28 tháng 11 2016

n) Theo bài ra ta có: \(\frac{x+1}{2008}=\frac{502}{x+1}\)

=> (x+1).(x+1) = 2008.502

=> (x+1)2 = 1008016

=> (x+1)2 = 10042

=> x+1 = 1004

=> x = 2004-1

=> x = 2003

Vậy x = 2003

p) Theo bà ra ta có: \(\left|\frac{5}{4}.x-\frac{7}{2}\right|-\left|\frac{5}{8}.x+\frac{3}{5}\right|=0\)

=> \(\left|\frac{5}{4}.x-\frac{7}{2}\right|=\left|\frac{5}{8}.x+\frac{3}{5}\right|\)

=> \(\frac{5}{4}.x-\frac{7}{2}=\pm\left(\frac{5}{8}.x+\frac{3}{5}\right)\)

=> \(\left[\begin{array}{nghiempt}\frac{5}{4}.x-\frac{7}{2}=\frac{5}{8}.x+\frac{3}{5}\\\frac{5}{4}.x-\frac{7}{2}=\frac{-5}{8}.x-\frac{3}{5}\end{array}\right.\)

=> \(\left[\begin{array}{nghiempt}\frac{5}{4}.x-\frac{5}{8}.x=\frac{3}{5}+\frac{7}{2}\\\frac{5}{4}.x+\frac{5}{8}.x=\frac{-3}{5}+\frac{7}{2}\end{array}\right.\)

=> \(\left[\begin{array}{nghiempt}\frac{5}{8}.x=\frac{41}{10}\\\frac{15}{8}.x=\frac{29}{10}\end{array}\right.\)

=> \(\left[\begin{array}{nghiempt}x=\frac{164}{25}\\x=\frac{116}{75}\end{array}\right.\)

Vậy x=\(\frac{164}{25}\) hoặc x=\(\frac{116}{75}\)

27 tháng 11 2016

Dễ mà!

28 tháng 11 2016

\(\frac{x+1}{2008}\)=\(\frac{502}{x+1}\)

=>(x+1)2=502.2008=1008016

=>(x+1)=1004  => x=1004-1=1003

Vậy x=1003

15 tháng 1 2016

Ta co:\(B=\frac{2008}{1}+\frac{2007}{2}+...+\frac{2}{2007}+\frac{1}{2008}\)

           \(B=\frac{2009-1}{1}+\frac{2009-2}{2}+...+\frac{2009-2007}{2007}+\frac{2009-2008}{2008}\)

            \(B=\left(\frac{2009}{1}+\frac{2009}{2}+...+\frac{2009}{2008}\right)-\left(\frac{1}{1}+\frac{2}{2}+...+\frac{2008}{2008}\right)\)

            \(B=2009+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)-2008\)

            \(B=1+2009\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)

             \(B=2009\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2008}+\frac{1}{2009}\right)\)

Vay \(\frac{A}{B}=\frac{1}{2009}\)

           

           

15 tháng 1 2016

mik đọc nhầm đề rồi.Kết quả là 9/187

Li-ke cho mik nhé!

 

11 tháng 8 2019

\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\cdot\cdot\cdot\left(\frac{1}{2009}-1\right)\)

\(=\frac{-1}{2}\cdot\frac{-2}{3}\cdot\cdot\cdot\cdot\frac{-2008}{2009}\)

\(=\frac{\left(-1\right)\cdot\left(-2\right)\cdot\cdot\cdot\left(-2008\right)}{2\cdot3\cdot\cdot\cdot2009}\)

\(=\frac{1\cdot2\cdot\cdot\cdot2008}{2\cdot3\cdot\cdot\cdot2009}\)

\(=\frac{1}{2009}\)

11 tháng 8 2019

1,

\(| x - \frac{2}{7} | = \frac{-1}{5}.\frac{-5}{7}\)

\(|x- \frac{2}{7}|=\frac{1}{7}\)

<=> \(x- \frac{2}{7} = \frac{1}{7} => x= \frac{3}{7} \)

Và \(x - \frac{2}{7} =\frac{-1}{7} => x= \frac{1}{7}\)

Học tốt

...
Đọc tiếp

\(3\frac{1}{2}-4\frac{2}{3}+\left[\frac{3}{4}-2\frac{1}{3}\right]-\left(\frac{5}{6}-\frac{7}{4}\right)+5\frac{1}{2}-3\)

\(2\frac{2}{3}-1\frac{2}{5}+1\frac{3}{10}-\left(\frac{2}{5}-\frac{5}{6}\right)+\frac{4}{15}-1\frac{1}{3}\)

\(\left[2\frac{1}{3}-1\frac{4}{3}\right]-\left(\frac{5}{4}-\frac{7}{12}+\frac{-11}{6}\right)+\frac{4}{3}-\frac{3}{4}\)

\(-3\frac{3}{2}+5\frac{4}{3}-\left(\frac{7}{6}-1\frac{3}{4}\right)+\left[\frac{2}{3}-2\frac{1}{4}\right]\)

\(2\frac{2}{3}-\frac{5}{12}-\left(1\frac{3}{4}-2\frac{1}{4}\right)-\left[1-1\frac{1}{6}\right]+\left[\frac{-5}{3}\right]\)

\(1\frac{1}{3}-5\frac{1}{2}-\left[\frac{5}{6}-2\frac{2}{3}\right]+\left[\frac{7}{12}-\frac{5}{6}\right]\)

\(\frac{8}{15}-\left(\frac{2}{5}-3\frac{1}{3}+\left[\frac{-5}{6}\right]\right)+\left[\frac{1}{2}-\frac{4}{5}\right]-\left(\frac{1}{6}-1\frac{1}{3}\right)\)

\(-2\frac{3}{2}+\left[\frac{5}{6}-1\frac{1}{3}\right]-\left(\frac{5}{12}-\frac{7}{6}\right)+\left[\frac{4}{3}-3\frac{1}{4}\right]\)

\(\frac{9}{10}-1\frac{2}{5}-\left(\frac{5}{6}-3\frac{1}{2}\right)-\left[2\frac{1}{4}-5\frac{2}{36}\right]-\left[1-2\frac{1}{15}\right]\)

\(\frac{5}{7}-\frac{5}{21}+1\frac{2}{3}-\left(1\frac{1}{2}-\frac{5}{14}-\frac{1}{3}\right)+\left[\frac{1}{6}-\frac{4}{3}\right]\)

\(\frac{5}{7}-\frac{5}{21}+1\frac{2}{3}-\left(1\frac{1}{2}-\frac{5}{14}-\frac{1}{3}\right)+\left[\frac{1}{6}-\frac{4}{3}\right]\)

\(1\frac{1}{5}-\left(\frac{-9}{10}-2\frac{1}{2}+\frac{3}{4}\right)+\left[\frac{1}{5}-2\frac{1}{2}\right]+\frac{7}{10}-\left(\frac{1}{2}-\frac{1}{4}\right)\)

\(2\frac{1}{3}-\left(5\frac{1}{2}-2\frac{2}{3}\right)+\left[1\frac{1}{6}-2\frac{1}{2}\right]-\frac{5}{12}+\left(\frac{1}{4}-\frac{1}{8}\right)\)

 

 

 

 

 

 

 

 

2
19 tháng 6 2018
  1. ​29/15
  2. 23
  3. 23/12
  4. 5/6
  5. 5/4
  6. -31/12
  7. 31/6
  8. -13/3
  9. 1087/180
  10. 1/6
  11. 1/6
  12. 2
  13. -67/24
11 tháng 4 2022
Ôi mẹ ơi dài khiếp