K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)

\(4A=1-\frac{1}{5^{100}}\)

\(A=\frac{1-\frac{1}{5^{100}}}{4}\)

\(A=\frac{1}{4}-\frac{1}{5^{100}}:4\)

\(A=\frac{1}{4}-\frac{1}{5^{100}.4}\)

=> \(V=4.5^{100}.\left(\frac{1}{4}-\frac{1}{5^{100}.4}\right)+1\)

\(V=\left(4.5^{100}.\frac{1}{4}-4.5^{100}.\frac{1}{5^{100}.4}\right)+1\)

\(V=\left(5^{100}-1\right)+1\)

\(V=5^{100}\)

5 tháng 4 2020

Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(\Rightarrow5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(\Rightarrow5A-A=\left(1-\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\right)\)

\(4A=1-\frac{1}{5^{100}}\)

\(\Rightarrow A=\frac{1-\frac{1}{5^{100}}}{4}\)

Vậy \(A=\frac{1-\frac{1}{5^{100}}}{4}\)

6 tháng 4 2020

Thanks bạn nha🐼🐼🐼

2 tháng 4 2023

1+1=3 :)))

10 tháng 6 2020

c) \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{1}{2}.\frac{4}{4}.\frac{6}{6}...\frac{100}{100}=\frac{1}{2}\)

10 tháng 6 2020

a) M . N = \(\left(\frac{1}{2.}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\right)=\frac{1.2.3.4....100}{2.3.4.5...101}=\frac{1}{101}\)

22 tháng 7 2016

bạn viết rõ được ko

22 tháng 7 2016

mình viết thừa số 1 ở cuối nhé

21 tháng 8 2020

\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(\Rightarrow5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{499}}\)

\(\Rightarrow5A-A=\left(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{499}}\right)-\left(\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{500}}\right)\)

\(\Rightarrow4A=1-\frac{1}{5^{500}}\)

\(\Rightarrow A=\frac{1-\frac{1}{5^{500}}}{4}=\frac{5^{500}-1}{4.5^{500}}\)