Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\begin{array}{l}\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{10}}.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{2.5}}.\frac{5}{{3.3}} + \frac{1}{3}\\ = \frac{1}{9} - \frac{1}{6} + \frac{1}{3}\\ = \frac{2}{{18}} - \frac{3}{{18}} + \frac{6}{{18}}\\ = \frac{5}{{18}}\end{array}\)
b)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{2}} \right)^3\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{8}} \right)\\ = \frac{4}{9} + \frac{1}{6} + \frac{1}{8}\\ = \frac{{32}}{{72}} + \frac{{12}}{{72}} + \frac{9}{{72}}\\ = \frac{{53}}{{72}}\end{array}\)
a) `1/9-0,3. 5/9+1/3`
`=1/9-3/10 . 5/9+1/3`
`=1/9-15/90+1/3`
`=1/9-1/6+1/3`
`=2/18-3/18+6/18`
`=5/18`
b) `(-2/3)^2+1/6-(-0,5)^3`
`=4/9+1/6-(-0,125)`
`=4/9+1/6+0,125`
`=4/9+1/6+1/8`
`=32/72+12/72+9/72`
`=53/72`
a: |x+1|+(2y-1)^2=3
mà x,y nguyên
nên (2y-1)^2=1 và |x+1|=2
=>\(\left\{{}\begin{matrix}x+1\in\left\{2;-2\right\}\\2y-1\in\left\{1;-1\right\}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{0;-3\right\}\\y\in\left\{1;0\right\}\end{matrix}\right.\)
c: |3x-1|+|2y-5|=3
Th1: |3x-1|=0 và |2y-5|=3
=>3x-1=0 và 2y-5 thuộc {3;-3}
=>y thuộc {4;1}(nhận) và x=1/3(loại)
TH2: |3x-1|=1 và |2y-5|=2
=>3x-1 thuộc {1;-1} và 2y-5 thuộc {2;-2}
=>x thuộc {2/3;0} và y thuộc {7/2;3/2}
=>Loại
TH3: |3x-1|=2 và |2y-5|=1
=>3x-1 thuộc {2;-2} và 2y-5 thuộc {1;-1}
=>x=3 và y thuộc {3;2}
TH4: |3x-1|=3 và |2y-5|=0
=>3x-1 thuộc {3;-3} và 2y-5=0
=>y=5/2(loại)
d: |2x+1|+|y-5|=0
=>2x+1=0 và y-5=0
=>y=5(nhận) và x=-1/2(loại)
=>Ko có cặp số (x,y) nào thỏa mãn
Ta có :\(\frac{2a}{3}=\frac{3b}{4}=\frac{4c}{5}\)
\(\frac{a}{\frac{3}{2}}=\frac{b}{\frac{4}{3}}=\frac{2c}{\frac{5}{2}}\) \(=\frac{a-b+2c}{\frac{3}{2}-\frac{4}{3}+\frac{5}{2}}\)\(=\frac{6}{\frac{8}{3}}=\frac{9}{4}\)
\(\begin{cases}a=\frac{27}{8}\\b=3\\c=\frac{45}{8}\end{cases}\)
c: \(=\dfrac{3}{2}\cdot1-1-20=\dfrac{3}{2}-21=\dfrac{-39}{2}\)
Ta có :
a:b:c=3:4:5
\(\Rightarrow\frac{a}{3}=\frac{b}{4}=\frac{c}{5}\)
Đặt \(\frac{a}{3}=\frac{b}{4}=\frac{c}{5}=k\)
\(\Rightarrow\begin{cases}a=3k\\b=4k\\c=5k\end{cases}\)
Thay vào biểu thức ta được :
\(\frac{5a^2+2b^2-c^2}{2a^2+3b^2-2c^2}=\frac{5.9.k^2+2.16.k^2-25.k^2}{2.9.k^2+3.16.k^2-2.25.k^2}=\frac{k^2\left(45+32-25\right)}{k^2\left(18+48-50\right)}=\frac{52}{16}=\frac{13}{4}\)
a) \(\left(2.5\right)^3=10^3=1000\)
b) \(\left(3\frac{1}{2}\right)^2=\left(\frac{7}{2}\right)^2=\frac{49}{4}\)
c) \(\left(\frac{1}{5}\right)^5.5^5=\frac{1}{3125}.3125=\frac{3125}{3125}=1\)