K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Sửa đề:  \(A=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1\)

b: \(B=-1^2+2^2-3^2+4^2-...-99^2+100^2\)

\(=\left(2-1\right)\left(2+1\right)+\left(4-3\right)\left(4+3\right)+...+\left(100-99\right)\left(100+99\right)\)

\(=1+2+3+...+99+100\)

=5050

3 tháng 10 2016

Muốn tính tổng của một dãy số có quy luật cách đều chúng ta thường hướng dẫn học sinh tính theo các bước như sau:

Bước 1: Tính số số hạng có trong dãy: (Số hạng lớn nhất của dãy - số hạng bé nhất của dãy) : khoảng cách giữa hai số hạng liên tiếp trong dãy + 1

Bước 2: Tính tổng của dãy: (Số hạng lớn nhất của dãy + số hạng bé nhất của dãy) x số số hạng có trong dãy : 2

3 tháng 10 2016
A= 1+2+2+...+99+100=100_ 1:2+1=..
28 tháng 6 2015

mình chỉ làm đc câu a và d thôi bạn có **** k? nếu **** thì liên hệ mình làm cho

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

Lời giải:

a) \(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow 3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:
\(\Rightarrow 3A-A=(3+3^2+3^3+..+3^{101})-(1+3+3^2+...+3^{100})\)

\(2A=3^{101}-1\Rightarrow A=\frac{3^{101}-1}{2}\)

b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(\Rightarrow 2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

Cộng theo vế:

\(\Rightarrow B+2B=2^{201}-2\)

\(\Rightarrow B=\frac{2^{101}-2}{3}\)

AH
Akai Haruma
Giáo viên
24 tháng 7 2018

c) Ta có:

\(C=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

\(\Rightarrow 3C=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

Cộng theo vế:

\(C+3C=(3^{100}-3^{99}+3^{98}-....+3^2-3+1)+(3^{101}-3^{100}+3^{99}-....+3^3-3^2+3)\)

\(4C=3^{101}+1\Rightarrow C=\frac{3^{101}+1}{4}\)

a: \(3A=3+3^2+...+3^{101}\)

\(\Leftrightarrow2A=3^{101}-1\)

hay \(A=\dfrac{3^{101}-1}{2}\)

b: \(2B=2^{101}-2^{100}+...+2^3-2^2\)

\(\Leftrightarrow3B=2^{101}-2\)

hay \(B=\dfrac{2^{101}-2}{3}\)

c: \(3C=3^{101}-3^{100}+....+3^3-3^2+3\)

=>\(4C=3^{101}+1\)

hay \(C=\dfrac{3^{101}+1}{4}\)

15 tháng 8 2016

mi lấy trong 30 bài thi hsg toán 6 cô đưa cho làm

15 tháng 8 2016

sai đề bài 2 rồi , n^2 - 1 chứ không phải n^2

27 tháng 10 2020

mọi người giúp mình với mình sắp phải nộp bài rùikhocroi