Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1+2+4+8+16+32+...+256+512+1024
= 20+21+22+23+24+25+...+28+29+210
= 1 + 2 + 22+3+4+5+...+8+9+10
= 3+254
Đặt $A=\dfrac12+\dfrac14+\dfrac18+\dfrac{1}{16}+...+\dfrac{1}{1024}$
$A=\dfrac12+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}}$
$\dfrac12\cdot A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{11}}$
$A-\dfrac{1}{2}A=(\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{10}})-(\dfrac{1}{2^2}+\dfrac{1}{2^3}+\dfrac{1}{2^4}+\dfrac{1}{2^5}+...+\dfrac{1}{2^{11}})$
$\dfrac{1}{2}A=\dfrac{1}{2}-\dfrac{1}{2^{11}}$
$\dfrac{1}{2}A=\dfrac{1}{2}\cdot(1-\dfrac{1}{2^{10}})$
$\Rightarrow A=1-\dfrac{1}{2^{10}}$
Vậy: ...
$Toru$
a)
\(\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)
\(\frac{2.3\left(1.2\right)+2.3\left(2.4\right)+2.3\left(3.6\right)+2.3\left(4.8\right)+2.3\left(5.10\right)}{3.4\left(3.4+6.8+9.12+12.16+15.20\right)}\)
\(=\frac{\left(3.4+6.8+9.12+12.16+15.20\right)}{2.3\left(3.4+6.8+9.12+12.16+15.20\right)}=\frac{1}{2.3}=\frac{1}{6}\)
A = 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/512 + 1/1024
A x 2 = 1 + 1/2 + 1/4 + 1/8 + 1/16 + ... + 1/512
A x 2 - A = 1 + 1/2 - 1/2+ 1/4 -1/4 + 1/8 -1/8 + 1/16 -1/16 + ... + 1/512 - 1/512 - 1/1024
A = 1 - 1/1024
A = 1023/1024
a)
Vì 2/9=6/27=8/36=12/54=16/72=18/81 nên:
2/9+6/27+8/36+12/54+16/72+18/81=
2/9+2/9+2/9+2/9+2/9+2/9=
2/9*6=
12/9=
4/3
Vậy 2/9+6/27+8/36+12/54+16/72+18/81=4/3
b)
Ta có:
1-2/5=3/5
1-2/7=5/7
1-2/9=7/9
...
1-2/99=97/99
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=
3/5*5/7*7/9*...*97/99=
(3*5*7*...*97)/(5*7*9*...*99)=
3/99=
1/33
Vậy (1-2/5)*(1-2/7)*(1-2/9)*...*(1-2/99)=1/33
c)
Gọi biểu thức 1/2+1/4+1/8+1/16+...+1/1024 là S,ta có:
S=1/2+1/4+1/8+1/16+...+1/1024
S*2=1+1/2+1/4+1/8+...+1/512
S*2-S=(1+1/2+1/4+1/8+...+1/512)-(1/2+1/4+1/8+1/16+...+1/1024)
S=1-1/1024
S=1023/1024
Vậy 1/2+1/4+1/8+1/16+...+1/1024=1023/1024
\(\dfrac{1}{16}< \dfrac{7}{16}< \dfrac{1}{2}< \dfrac{9}{16}< \dfrac{3}{4}< \dfrac{7}{8}< \dfrac{11}{9}< \dfrac{16}{9}< \dfrac{8}{3}< \dfrac{17}{5}\)
Đặt A × 2 = 2 + 4 +8 +16 + 32 + ....+ 1024+2048
Cùng thêm 1 và bớt 1 ta có như sau:
A × 2 = 1 + 2 + 4 + 8 + 16 + .....+1024+2048 -1
A × 2 = A +2048 - 1
A = 2048 -1 =2047