K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2018

A=(2/3+3/4+...+99/100)x(1/2+2/3+3/4+...+98/99)-(1/2+2/3+...+99/100)x(2/3+3/4+4/5+...98/99)

ta cho nó dài hơn như sau

A=(2/3+3/4+4/5+5/6+....+98/99+99/100)

ta thấy các mẫu số và tử số giống nhau nên chệt tiêu các số

2:3:4:5...99 vậy ta còn các số 2/100

ta làm vậy với(1/2+2/3+3/4+.....+98/99) thi con 1/99

làm vậy với câu (1/2+2/3+...+99/100) thì ra la 1/100

vậy với (2/3+3/4+...+98/99) ra 2/99

xùy ra ta có 2/100.1/99-1/100.2/99=1/50x1/99-1/100x2/99=tự tinh nhe mình ngủ đây

1 tháng 12 2017

 Ta có : 0+(-1)+2+(-3)+...+98+(-99)+100

= (0+100) + (-1-99)+(2+98)+..+(-49-51)+50

=100-100+100-100+...-100+50 

=0+0+..+0+50 =50

1 tháng 12 2017

\(\text{=0+1+1+1+...+1+1}\)

=50.1=50

16 tháng 2 2020

K = (\(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\))+...+\(\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

\(=\left(3^1+3^2+3^3+3^4\right)+...+\left(3^1+3^2+3^3+3^4\right)\)

\(=120+...+120\)(Có 25 số 120)

\(=25.120\)

\(=300\)

vậy ...

26 tháng 3 2018

\(\frac{1+\left(1+2\right)+\left(1+2+3\right)+.....+\left(1+2+3+4+......+100\right)}{\left(1.100+2.99+3.98+.......+99.2+100.1\right).2013}\)

\(=\frac{1.100+2.99+3.98+......+99.2+100.1}{\left(1.100+2.99+3.98+.....+99.2+100.1\right).2013}\)

\(=\frac{1}{2013}\)

21 tháng 3 2020

\(\left(\frac{1}{2}-1\right):\left(\frac{1}{3}-1\right):....:\left(\frac{1}{100}-1\right)\text{ có số số lẻ thừa số âm nên bằng:}\)

\(-\left[\left(1-\frac{1}{2}\right):\left(1-\frac{1}{3}\right):...\left(1-\frac{1}{100}\right)\right]=-\left[\frac{1}{2}:\frac{2}{3}:\frac{3}{4}:......:\frac{99}{100}\right]=-\left(\frac{1.3.4...100}{2.2.3...99}\right)=-50\)

15 tháng 8 2017

bn thử nghĩ xem

mk chắc chắn bn lm được]

30 tháng 1 2020

Câu 1 Tính 

\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{20}+...+\frac{1}{2352}+\frac{1}{2450}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{4.5}+...+\frac{1}{48.49}+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}=\frac{49}{50}\)

Câu 2 Tính 

\(P=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{99}\right)\left(1-\frac{1}{100}\right)=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{98}{99}.\frac{99}{100}\)

\(=\frac{1.2.3...98.99}{2.3.4...99.100}=\frac{1}{100}\)

Câu 3 

a) Ta có : M = 1 + 3 + 32 + 33 + ... + 3118 + 3119 (1)

=> 3M = 3 + 32 + 33 + 34 + ... + 3119 + 3120  (2)

Lấy (2) trừ (1) theo vế ta có : 

3M - M = (3 + 32 + 33 + 34 + ... + 3119 + 3120) - ( M = 1 + 3 + 32 + 33 + ... + 3118 + 3119)

=>  2M = 3120 - 1

=>    M = \(\frac{3^{120}-1}{2}\)

b) M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

        = (1 + 3 + 32) + (3+ 34 + 35) + ... + (3117 + 3118 + 3119)

        = (1 + 3 + 32) + 33(1 + 3 + 32) + ... + 3117(1 + 3 + 32)

        = 13 + 33.13 + ... + 3117.13

        = 13(1 + 33 + ... + 3117\(⋮\)13

=> M \(⋮\)13

M = 1 + 3 + 32 + 33 + ... + 3118 + 3119

= (1 + 3 + 32 + 33) + (34 + 35 + 36 + 37) + ... + (3116 + 3117 + 3118 + 3119)

= (1 + 3 + 32 + 33) + 34(1 + 3 + 32 + 33) + ... + 3116(1 + 3 + 32 + 33)

= 40 + 34.40 + ... + 3116.40

= 40(1 + 34 + ... + 3116

= 5.8.(1 + 34 + ... + 3116)  \(⋮\)5

4) Tính 

A = 2100 - 299 - 298 - ... - 22 - 2 - 1

=> 2A =  2101 - 2100 - 299 - 298 - 22 - 2 - 1

Lấy 2A trừ A theo vế ta có : 

2A - A = (2101 - 2100 - 299 - 298 - 22 - 2 - 1) - (2100 - 299 - 298 - ... - 22 - 2 - 1)

=>   A = 2101 - 2100 - 2100 + 1

=>   A = 2101 - (2100 + 2100) + 1

=>   A  = 2101 - 2100 . 2 + 1

=>   A = 1

Câu 5 a) C = 1.2 + 2.3 + 3.4 + ... + 99.100

=> 3C = 1.2.3 + 2.3.3 + 3.4.3 + .... + 99.100.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100.(101 - 98)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100

          = 99.100.101 

=> C = 99.100.101 : 3 =  333300

b) Ta có : D = 22 + 42 + 62 + ... + 982

                    = 22(12 + 22  + 32 + ... + 492

                    =  2.(12 + 22  + 32 + ... + 492)

                    = 22.(1.1 + 2.2 + 3.3 + ... + 49.49)

                    = 22.[1.(2 - 1) + 2..(3 - 1) + 3(4 - 1) + ... + 49(50 - 1)]

                    = 22.[(1.2 + 2.3 + 3.4 + ... + 49.50) - (1 + 2 + 3 + 4 + ... + 49)]

Đặt E = 1.2 + 2.3 + 3.4 + ... + 49.50

=> 3E = 1.2.3 + 2.3.3 + 3.4.3 + .... + 49.50.3

          = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 49.50.(51 - 48)

          = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 49.50.51 - 48.49.50

          = 49.50.51 

=> E = 49.50.51/3 = 41650

Khi đó D = 22.[41650 - (1 + 2 + 3 + 4 + ... + 49)]

               = 22.[41650 - 49(49 + 1)/2]

               = 22.[41650 - 1225 

               = 22.40425

               = 161700

=> D = 161700