K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2019

trên mạng cũng có mà bnaj

19 tháng 9 2019

\(a,A=2^1+2^2+2^3+...+2^{2019}\)

\(2A=2^2+2^3+2^4+...+2^{2020}\)

\(\Rightarrow2A-A=A=2^{2020}-2\)

\(B=1+3+3^2+3^3+...+3^{2020}\)

\(3B=3+3^2+3^3+...+3^{2021}\)

\(3B-B=2B=3^{2021}-1\)

\(B=\frac{3^{2021}-1}{2}\)

19 tháng 9 2019

a,\(A=2^1+2^2+2^3+...+2^{2019}\)

\(2A=2^2+2^3+2^4+...+2^{2020}\)

\(2A-A=\left[2^2+2^3+2^4+...+2^{2020}\right]-\left[2^1+2^2+...+2^{2019}\right]\)

\(A=2^{2020}-2^1=2^{2020}-2\)

b, \(B=1+3+3^2+3^3+...+3^{2020}\)

\(3B=3+3^2+3^3+...+3^{2021}\)

\(3B-B=\left[3+3^2+3^3+...+3^{2021}\right]-\left[1+3+3^2+...+3^{2020}\right]\)

\(2B=3^{2021}-1\)

\(B=\frac{3^{2021}-1}{2}\)

3 tháng 4 2019

\(B=\frac{2019}{1}+\frac{2018}{2}+\frac{2017}{3}+......+\frac{1}{2019}\)

\(=\left(\frac{2018}{2}+1\right)+\left(\frac{2017}{3}+1\right)+.....+\left(\frac{1}{2019}+1\right)+1\)

\(=\frac{2020}{2}+\frac{2020}{3}+\frac{2020}{4}+.....+\frac{2020}{2019}+\frac{2020}{2020}\)

\(=2020\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2020}\right)\)

\(=2020A\)

\(\Rightarrow\frac{A}{B}=\frac{A}{2020A}=\frac{1}{2020}\)

12 tháng 3 2020

Đặt \(A=1-3^2+3^3-3^4+...+3^{2017}-3^{2018}+3^{2019}-3^{2020}\)

\(\Leftrightarrow A=1-\left(3^2-3^3+3^4-.....-3^{2017}+3^{2018}-3^{2019}+3^{2020}\right)\)

Đặt \(B=3^2-3^3+3^4-.....-3^{2017}+3^{2018}-3^{2019}+3^{2020}\)

\(3B=3\left(3^2-3^3+3^4-.....-3^{2017}+3^{2018}-3^{2019}+3^{2020}\right)\)

\(3B=3^3-3^4+3^5-....-3^{2018}+3^{2019}-3^{2020}+3^{2021}\)

\(3B+B=\left(3^3-3^4+3^5-....-3^{2018}+3^{2019}-3^{2020}+3^{2021}\right)\)

\(+\left(3^2-3^3+3^4-.....-3^{2017}+3^{2018}-3^{2019}+3^{2020}\right)\)

\(4B=3^{2021}+3^2\)

\(B=\frac{3^{2021}+3^2}{4}\)Thay vào A ta có A=\(1-\frac{3^{2021}+3^2}{4}\)

12 tháng 3 2020

thank!

12 tháng 3 2020

Đặt \(A=5+5^2+5^3+....+5^{199}+5^{200}\)

\(\Leftrightarrow5A=5\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)

\(\Leftrightarrow5A=5^2+5^3+5^4+....+5^{200}+5^{201}\)

\(\Leftrightarrow5A-A=\left(5^2+5^3+5^4+....+5^{200}+5^{201}\right)-\left(5+5^2+5^3+....+5^{199}+5^{200}\right)\)

\(\Leftrightarrow4A=5^{201}-5\)

\(\Leftrightarrow A=\frac{5^{201}-5}{4}\)