Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+....+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{99}{100}}\)
Xét các mẫu số của dãy phân số : \(\dfrac{1}{1};\dfrac{1}{2};....;\dfrac{1}{100}\)
ta có dãy số: 1; 2; ....;100
Dãy số trên có số số hạng là: ( 100 - 1) : 1 + 1 = 100 (số)
Tách 100 thành tổng của 100 số 1 rồi nhóm lần lượt 1 với từng phân số thuộc dãy phân số trên khi đó ta có:
A = \(\dfrac{100-(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{(1-1)+(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+....+(1-\dfrac{1}{100})}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.....+\dfrac{99}{100}}\)
A = \(\dfrac{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+...+\dfrac{99}{100}}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+....+\dfrac{99}{100}}\)
A = 1
A=1+2+22+…+2100
2A=2(1+2+22+…+2100)
2A=2+22+…+2101
2A-A = A = 2+22+…+2101-(1+2+22+…+2100)
A = 2+22+…+2101-1-2-22-…-2100
A = (2-2)+(22-22)+…+(2100-2100)+2101-1
A = 0+0+…+0+2101-1
A = 2101-1
B=3-32+33-34+…+299-3100
3B = 3(3-32+33-34+…+299-3100)
3B = 32-33+34-…-299+3100-3101
3B+B = 4B = 3-32+33-34+…+299-3100
4B =(3-32+33-34+…+299-3100)+(32-33+34-…-299+3100-3101)
4B =3-32+33-34+…+299-3100+32-33+34-…-299+3100-3101
4B =3+(32-32)+(33-33)+(34-34)+…+(299-299)+(3100-3100)-3101
4B =3+0+0+0+....+0-3101
4B =3-3101
B = (3-3101)/4
\(3A=3+3^2+...3^{2003}\)
\(3A-A=\left(3-3\right)+\left(3^2-3^2\right)+...+3^{2003}-1\)
\(\Leftrightarrow\Leftrightarrow A=\frac{3^{2003}-1}{2}\)
QL: Mỗi số hạng cách đều nhau 3 đvị
a) Số hạng thứ 100 của tổng là: (100-1)x3+5=302
b) Từ 5 đến 302 có số số hạng là: (302-5):3+1=100 số hạng
Tổng của 100 số hạng đầu tiên là: (5+302)x100:2=15350
3B=32-33+34-...-3101
B+3B=3-3101
4B=3-3101
B=\(\frac{3-3^{101}}{4}\)