K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2017

Theo nhị thức Newton ta có:

( 3 + x ) 2015 = ​​​ C 2015 0 .    3 2015 + ​   C 2015 1 .3 2014 . x + ​ C 2015 2 .3 2013 . x 2 + ....   + C 2015 2014 .3. x 2014 + ​ C 2015 2015 . x 2015

Thay x = -1 ta được:

( 3 − 1 ) 2015 = ​​​ C 2015 0 .    3 2015 − ​   C 2015 1 .3 2014 + ​ C 2015 2 .3 2013 − ....   + C 2015 2014 .3 − ​ C 2015 2015

Suy ra,  S   =     2 2015

 Ta chọn đáp án A

1 tháng 4 2021

 Mình nhầm \(C^1_{2016}a_{2015}\)thành  \(C^1_{2016}a^{2015}\)

1 tháng 9 2018

Chọn A.

Xét: 

Khi đó:

18 tháng 3 2018

30 tháng 10 2021

Gọi \(A=C_{2016}^0+C_{2016}^1+C_{2016}^2+...+C_{2016}^{2016}\)

          \(=2^{2016}\)  (HỆ QUẢ CỦA NHỊ THỨC NIUTON)

\(\Rightarrow\) \(S=2015+\left(A-C_{2016}^0-C_{2016}^1\right)\)

        \(=2015+2^{2016}-1-2016\)

        \(=2^{2016}-2\)

10 tháng 9 2023

a) Để chứng minh rằng Un > 1 đối với mọi N và Un là dãy tăng, ta có thể sử dụng phương pháp quy nạp.

Bước cơ sở: Ta thấy rằng u1 = 2 > 1.

Bước giả sử: Giả sử đúng đối với một số nguyên k ≥ 1, tức là uk > 1.

Bước bước: Ta sẽ chứng minh rằng uk+1 > 1. Từ công thức cho dãy (Un), ta có:

uk+1 = uk-2015 + uk + 1/uk - uk + 3

Vì uk > 1 (theo giả thiết giả sử), ta có uk - 2015 > 0 và uk + 3 > 0. Do đó, uk+1 > 0.

Vì vậy, ta có uk+1 > 1, và đẳng thức này đúng đối với mọi số nguyên k ≥ 1.

Do đó, ta chứng minh được rằng Un > 1 đối với mọi N và Un là dãy tăng.

b) Để tính limn∑i=11uk - i + 2, ta có thể sử dụng định nghĩa của dãy (Un) và công thức tổng của dãy số aritmeti.

Từ công thức cho dãy (Un), ta có:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

Vì Un là dãy tăng, ta có thể viết lại công thức trên như sau:

uk - i + 2 = uk - 2015 - i + uk + 1 - i + uk + 2 - i

= (uk+1 - 2015 + uk + 1) - (uk - 2015 + uk) + (uk+1 - uk)

= 2uk+1 - 2uk + 2015

Do đó, ta có thể viết lại tổng như sau:

∑i=11uk - i + 2 = 2∑i=11uk+1 - 2∑i=11uk + 2015∑i=1

= 2(u12 - u2) + 2015(12)

Với giá trị cụ thể của u12 và u2, ta có thể tính được tổng trên.