Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta thấy với a,b >0 thì \(\frac{a}{b}<\frac{a+n}{b+n}\), với a,b<0 thì \(\frac{a}{b}>\frac{a+\left(-n\right)}{b+\left(-n\right)}\) \(\left(n\in Z;\right)n>0\)
Vậy ta sắp xếp như sau:
\(-\frac{8}{9};-\frac{6}{7};-\frac{4}{5};-\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{5}{6};\frac{7}{8};\frac{9}{10}\)
b, Có:
\(\frac{0}{23}=0\)
\(-\frac{14}{5}<-1<\frac{-15}{19}<-\frac{15+\left(-2\right)}{19+\left(-2\right)}=-\frac{13}{17}\)
\(\frac{5}{2}>\frac{4}{2}=2>\frac{11}{7}=\frac{99}{63}>\frac{13}{9}=\frac{91}{63}\)
Vậy ta sắp xếp như sau:
\(-\frac{14}{5};-\frac{15}{19};-\frac{13}{17};0;\frac{13}{9};\frac{11}{7};\frac{5}{2}\)
\(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{\frac{3}{4}+\frac{3}{24}+\frac{3}{124}}\) + \(\frac{\frac{2}{7}+\frac{2}{17}+\frac{2}{127}}{\frac{3}{7}+\frac{3}{17}+\frac{3}{127}}\)
= \(\frac{\frac{1}{4}+\frac{1}{24}+\frac{1}{124}}{3.\left(\frac{1}{4}+\frac{1}{24}+\frac{1}{124}\right)}\) + \(\frac{2.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}{3.\left(\frac{1}{7}+\frac{1}{17}+\frac{1}{127}\right)}\)
= \(\frac{1}{3}\) + \(\frac{2}{3}\) = 1
a) \(\frac{7}{11}-\left(\frac{3}{5}+\frac{7}{11}\right)=-\frac{3}{5}\)
b) \(\left(\frac{11}{22}+\frac{5}{11}\right)-\frac{19}{22}=\frac{1}{11}\)
c) \(\frac{2}{9}.\frac{4}{5}+\frac{2}{9}.\frac{14}{5}=\frac{4}{5}\)
d) \(-\frac{3}{2}.\frac{7}{10}-\frac{3}{2}.\frac{1}{10}=-\frac{6}{5}\)
e) \(\left(0,75-1+\frac{1}{4}\right):\left(\frac{1515}{1616}+\frac{1616}{1717}\right)=0\)
Đáp án A. Theo quy luật : cứ sau vòng lặp 2 số (vd 7-8) thì số thứ nhất giảm đi 1 đơn vị (vd 7->6) và số thứ 2 tăng lên 1 đơn vị (vd 8->9)
bạn hỏi thầy cô là dc
bạn sheach lên mạng cũng dc