Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+...+\dfrac{1}{2n\left(2n+2\right)}=\dfrac{1009}{4038}\)
\(\Leftrightarrow\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+...+\dfrac{2}{2n\left(2n+2\right)}=\dfrac{1009}{2019}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{8}+...+\dfrac{1}{2n}-\dfrac{1}{2n+2}=\dfrac{1009}{2019}\)
\(\Leftrightarrow\dfrac{1}{2}-\dfrac{1}{2n+2}=\dfrac{1009}{2019}\)
\(\Leftrightarrow\dfrac{n}{2n+2}=\dfrac{1009}{2019}\)
\(\Leftrightarrow2019n=1009\left(2n+2\right)\)
\(\Leftrightarrow2019n=2018n+2018\)
\(\Leftrightarrow n=2018\)
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)
\(=\frac{1}{2}.\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}...\frac{2015.2017+1}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2016.2016}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.3.4...2016}{1.2.3...2015}.\frac{2.3.4...2016}{3.4.5...2017}\)
\(=\frac{1}{2}.2016.\frac{2}{2017}=\frac{2016}{2017}\)
\(\frac{1}{2}.\left(1+\frac{1}{1.3}\right).\left(1+\frac{1}{2.4}\right).\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{2015.2017}\right)\)
\(=\frac{1}{2}.\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}...\frac{2015.2017+1}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.2}{1.3}.\frac{3.3}{2.4}.\frac{4.4}{3.5}...\frac{2016.2016}{2015.2017}\)
\(=\frac{1}{2}.\frac{2.3.4...2016}{1.2.3...2015}.\frac{2.3.4...2016}{3.4.5...2017}\)
\(=\frac{1}{2}.2016.\frac{2}{2017}=\frac{2016}{2017}\)
program chia;
uses crt;
var n,i:integer;
s:real;
begin
clrscr;
s:=0;
for i:=2 to 50 do s:=s+1/i;
writeln('Tong la ',s:1:2);
readln;
end.
Số hạng thứ 50 theo quy luật là: \(\frac{1}{100.102}\)
Gọi tổng 50 số hạng đầu là S
Ta có: \(S=\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{100.102}\)
\(\Leftrightarrow2S=\frac{2}{2.4}+\frac{2}{4.6}+...+\frac{2}{100.102}\)
\(\Leftrightarrow2S=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{100}-\frac{1}{102}=\frac{1}{2}-\frac{1}{102}=\frac{25}{51}\)
\(\Rightarrow S=\frac{25}{51}:2=\frac{25}{102}.\)
Bạn Don''t look at me làm đúng rồi ấy