Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=(a+b)[a^(n-1)-a^(n-2)*b+a^(n-3)*b^2-...+a^2*b(n-3)-a*b(n-2)+b(n-1)]
Câu hỏi của Nguyễn Thị Ngọc Lan - Toán lớp 7 - Học toán với OnlineMath
Ta có :
Tổng trên có số số hạng là:
(n-1):1+1=n(số hạng)
=>tổng trên là:
((n^3-1^3).n):2
=(n^4-n):2
\(Câu\text{ }4:\\ Ta\text{ }có:\text{(x^2 – 3x + 2) + (4x^3– x^2+ x – 1)}\\ =x^2-3x+2+4x^3-x^2+x-1\\ =\text{4x}^3+\left(x^2-x^2\right)+\left(-3x+x\right)+\left(2-1\right)\\ =4x^3-2x+1\)
\(Câu\text{ }5:Đặt\text{ }tính\text{ }trừ\text{ }như\text{ }sau:\)
a; A =1 + 2 +3+ 4+ 5+ ... +n
Xét dãy số 1; 2; 3; 4;5;...;n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)
Tổng của dãy số trên là: (n + 1).n x 2
A = (n + 1).n:2
B = 1 + 3 + 5+ 7+ ...+ (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1) x n : 2 = n2
Vậy B = n2
Xét dãy 1 + 3 + 5 + ... + (2n-1)
Nhận xét : Đây là dãy số cách đều 2 đơn vị
Số số hạng: \(\dfrac{\left(2n-1-1\right)}{2}+1=\dfrac{2n-2}{2}+1=n-1+1=n\) (số)
Tổng dãy: \(\dfrac{2n-1+1}{2}.n=n^2\)
a) Số số hạng của dãy số là:
(n-1):1+1=n-1+1=n(số hạng)
Tổng của dãy số là:
\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)
b) Số số hạng của dãy số là:
\(\dfrac{2n-1-1}{2}+1=\dfrac{2n-2}{2}+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(1+2n-1\right)\cdot\dfrac{n}{2}==\dfrac{2n^2}{2}=n^2\)
Viết lại S như sau: S= 1^3+2^3+3^3+4^3+......+ (n-1)^3+n^3
ta cần nhớ lại hằng đẳng thức bậc 3 sau: a^3+b^3=(a+b)^3 -3ab(a+b),rồi ghép các cặp số liền kề với nhau là được VD như 1 và 2, 3 và 4, n-1 và n
Khi đó S sẽ trở thành: S=(1+2)^3-3x1x2(1+2) + (3+4)^3 -3x3x4(3+4) +....+ (n-1+n)^3 -3xnx(n-1)(n-1-n)
<=> S=(1+2)^3-3x1x2(1+2) + (3+4)^3 -3x3x4(3+4) +....+(2n-1)^3-3n(n-1)(2n-1)
Vậy...................
Trong này có nhiều cách làm này bạn: Tính tổng $S= 1^3 + 2^3 + 3^3 +....+ n^3$ - Các dạng toán khác - Diễn đàn Toán học