Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng
S=\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+........+\left(-3\right)^{2015}\)
Trả lời:
\(S=\) \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)
\(-3S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)
\(-3S-S=\)\([\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(]\)\(-\)\([\)\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)\(]\)
\(\left(-3-1\right)S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(-\)\(\left(-3\right)^0-\left(-3\right)^1-\left(-3\right)^2-...-\)\(\left(-3\right)^{2015}\)
\(-4S=\)\(\left[\left(-3\right)^1-\left(-3\right)^1\right]\)\(+\)\(\left[\left(-3\right)^2-\left(-3\right)^2\right]\)\(+\)\(...\)\(+\)\(\left[\left(-3\right)^{2015}-\left(-3\right)^{2015}\right]\)\(+\)\(\left[\left(-3\right)^{2016}-\left(-3\right)^0\right]\)
\(-4S=\)\(0+0+...+0+\left(-3\right)^{2016}-1\)
\(-4S=\)\(3^{2016}-1\)
\(S=\frac{-3^{2016}+1}{4}\)
Vậy \(S=\frac{-3^{2016}+1}{4}\)
P/s: Không chắc có đúng ko.
Hok tốt!
Vuong Dong Yet
Ta có B= (-3)0+ (-3)1+.....+(-3)2015
=> -3B= -3.[(-3)0+(-3)1+...+(-3)2015]
=> -3B= (-3)1+ (-3)2+....+(-3)2016
=> -3B-B= (-3)1 +(-3)2+....+ (-3)2016 - [(-3)0+(-3)1+....+ (-3) 2015
=> -4B= (-3)2016- (-3)1
=>-4B= (-3)2016+ 1
=> B= (-3)2016+ 1 / -4
\(=\dfrac{\left(-5\right)\cdot0.81}{\left(\dfrac{5}{2}\right)^4\cdot\left(-\dfrac{10}{3}\right)^3\cdot\left(-1\right)}=\dfrac{-5\cdot0.81}{\dfrac{5^4\cdot10^3}{2^4\cdot3^3}}\)
\(=-4.05:\dfrac{5^7}{3^3\cdot2}=\dfrac{-81}{20}\cdot\dfrac{3^3\cdot2}{5^7}=\dfrac{-3^7\cdot2}{2^2\cdot5^8}=\dfrac{-3^7}{2\cdot5^8}\)
a)
\(\begin{array}{l}{\left( {\frac{{ - 1}}{2}} \right)^5} = \frac{{{{\left( { - 1} \right)}^5}}}{{{2^5}}} = \frac{{ - 1}}{{32}};\\{\left( {\frac{{ - 2}}{3}} \right)^4} = \frac{{{{\left( { - 2} \right)}^4}}}{{{3^4}}} = \frac{{16}}{{81}};\\{\left( { - 2\frac{1}{4}} \right)^3} = {\left( {\frac{{ - 9}}{4}} \right)^3} = \frac{{{{\left( { - 9} \right)}^3}}}{{{4^3}}} = \frac{{-729}}{{64}};\\{\left( { - 0,3} \right)^5} = {\left( {\frac{{ - 3}}{{10}}} \right)^5} = \frac{{ - 243}}{{100000}};\\{\left( { - 25,7} \right)^0} = 1\end{array}\)
b)
\(\begin{array}{l}{\left( { - \frac{1}{3}} \right)^2} = \frac{1}{9};\\{\left( { - \frac{1}{3}} \right)^3} = \frac{{ - 1}}{{27}};\\{\left( { - \frac{1}{3}} \right)^4} = \frac{1}{{81}};\\{\left( { - \frac{1}{3}} \right)^5} = \frac{{ - 1}}{{243}}.\end{array}\)
Nhận xét:
+ Luỹ thừa của một số hữu tỉ âm với số mũ chẵn là một số hữu tỉ dương.
+ Luỹ thừa của một số hữu tỉ âm với số mũ lẻ là một số hữu tỉ âm.
Ta có :
\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2015}\)
\(3S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2015}\)
\(3S-S=\left[\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]+\left[\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\right]\)
\(2S=\left(-3\right)^{2016}-\left(-3\right)^0\)
\(2S=3^{2016}-1\)
\(S=\frac{3^{2016}-1}{2}\)
Vậy \(S=\frac{3^{2016}-1}{2}\)
Chúc bạn học tốt ~
= (-3)2016 -1