Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng
S=\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+........+\left(-3\right)^{2015}\)
Trả lời:
\(S=\) \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)
\(-3S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)
\(-3S-S=\)\([\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(]\)\(-\)\([\)\(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2015}\)\(]\)
\(\left(-3-1\right)S=\)\(\left(-3\right)^1+\left(-3\right)^2+...+\)\(\left(-3\right)^{2016}\)\(-\)\(\left(-3\right)^0-\left(-3\right)^1-\left(-3\right)^2-...-\)\(\left(-3\right)^{2015}\)
\(-4S=\)\(\left[\left(-3\right)^1-\left(-3\right)^1\right]\)\(+\)\(\left[\left(-3\right)^2-\left(-3\right)^2\right]\)\(+\)\(...\)\(+\)\(\left[\left(-3\right)^{2015}-\left(-3\right)^{2015}\right]\)\(+\)\(\left[\left(-3\right)^{2016}-\left(-3\right)^0\right]\)
\(-4S=\)\(0+0+...+0+\left(-3\right)^{2016}-1\)
\(-4S=\)\(3^{2016}-1\)
\(S=\frac{-3^{2016}+1}{4}\)
Vậy \(S=\frac{-3^{2016}+1}{4}\)
P/s: Không chắc có đúng ko.
Hok tốt!
Vuong Dong Yet
Ta có :
\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2015}\)
\(3S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2015}\)
\(3S-S=\left[\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2016}\right]+\left[\left(-3\right)^0+\left(-3\right)^1+...+\left(-3\right)^{2015}\right]\)
\(2S=\left(-3\right)^{2016}-\left(-3\right)^0\)
\(2S=3^{2016}-1\)
\(S=\frac{3^{2016}-1}{2}\)
Vậy \(S=\frac{3^{2016}-1}{2}\)
Chúc bạn học tốt ~
Tính tổng : S = \(\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\)
\(S=\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\)
\(\left(-3\right)S=\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2005}\)
\(\left(-3\right)S-S=\left[\left(-3\right)^1+\left(-3\right)^2+\left(-3\right)^3+...+\left(-3\right)^{2005}\right]-\left[\left(-3\right)^0+\left(-3\right)^1+\left(-3\right)^2+...+\left(-3\right)^{2004}\right]\)\(\left(-2\right)S=\left(-3\right)^{2005}-\left(-3\right)^0\)
\(S=\dfrac{\left(-3\right)^{2005}-1}{-2}\)
Ta có B= (-3)0+ (-3)1+.....+(-3)2015
=> -3B= -3.[(-3)0+(-3)1+...+(-3)2015]
=> -3B= (-3)1+ (-3)2+....+(-3)2016
=> -3B-B= (-3)1 +(-3)2+....+ (-3)2016 - [(-3)0+(-3)1+....+ (-3) 2015
=> -4B= (-3)2016- (-3)1
=>-4B= (-3)2016+ 1
=> B= (-3)2016+ 1 / -4
\(=\dfrac{\left(-5\right)\cdot0.81}{\left(\dfrac{5}{2}\right)^4\cdot\left(-\dfrac{10}{3}\right)^3\cdot\left(-1\right)}=\dfrac{-5\cdot0.81}{\dfrac{5^4\cdot10^3}{2^4\cdot3^3}}\)
\(=-4.05:\dfrac{5^7}{3^3\cdot2}=\dfrac{-81}{20}\cdot\dfrac{3^3\cdot2}{5^7}=\dfrac{-3^7\cdot2}{2^2\cdot5^8}=\dfrac{-3^7}{2\cdot5^8}\)