Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Taco\):
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right).......................\left(1-\frac{1}{1+2+3+.............+2018}\right)\)
\(A=\left(\frac{1+2}{1+2}-\frac{1}{1+2}\right).............\left(\frac{1+2+3+......+2018}{1+2+3+.......+2018}-\frac{1}{1+2+3+......+2018}\right)\)
\(A=\left(\frac{2}{1+2}\right)...........\left(\frac{2+3+.......+2018}{1+2+3+......+2018}\right)\)
\(\Rightarrow A+2017.\left(\frac{1}{3}\right).....\frac{2+3+.....+2018}{1+2+3+...+2018}=1.1.1......1=1\)
\(.................................\)
\(=\left(-\frac{1}{2}\right)\left(-\frac{2}{3}\right)\left(-\frac{3}{4}\right)...\left(-\frac{2017}{2018}\right)\)
Tích trên là tích của các thừa số âm và có (2018-2)+1=2017 thừa số nên có kq âm
\(=-\frac{1}{2018}\)
\(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{2018}-1\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
Công thức tổng quát:
\(1-\frac{1}{n^2}=\left(\frac{n-1}{n}\right)\left(\frac{n+1}{n}\right)\)
Do đó:
\(A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{12^2}\right)\)
\(A=\frac{1}{2}.\frac{3}{2}.\frac{2}{3}.\frac{4}{3}.\frac{3}{4}.\frac{5}{4}....\frac{11}{12}.\frac{13}{12}\)
\(A=\frac{1}{2}.\frac{13}{12}=\frac{13}{24}\)
Nhận xét :\(1-\frac{1}{n^2}=\frac{n^2-1}{n^2}=\frac{\left(n+1\right)\left(n-1\right)}{n^2}\)
Do đó : \(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{100^2}\right)\)
\(=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}.........\frac{99.101}{100^2}\)
\(=\frac{\left(1.2.3....99\right)\left(3.4.5....101\right)}{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}\)
\(=\frac{101}{100.2}\)
\(=\frac{101}{200}\)
1,tổng quát: (2k+1)/[k(k+1)^2]
=(2k+1)/k^2(k+1)^2=[(k+1)^^2-k^2]/k^2(k+1)^2=1/k^2-1/(k+1)^2
áp dụng vào ,kết quả =2024/2025
Ta có:
\(1-\frac{1}{1+2+...+k}=1-\frac{1}{\frac{k\left(k+1\right)}{2}}=\frac{k\left(k+1\right)-2}{k\left(k+1\right)}=\frac{\left(k-1\right)\left(k+2\right)}{k\left(k+1\right)}\)
Áp dụng biểu thức trên ta được:
\(P=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2018}\right)\)
\(P=\frac{1.4}{2.3}.\frac{2.5}{3.4}.\frac{3.6}{4.5}.....\frac{2017.2020}{2018.2019}\)
\(P=\frac{1}{2018}.\frac{2020}{3}=\frac{1010}{3027}\)