Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiên \(y\ne0\)
\(\frac{x}{y}=16\Rightarrow x=16y\)thế vào \(\frac{x}{y^2}=2\)
\(\Rightarrow\frac{16y}{y^2}=2\Rightarrow\frac{16}{y}=2\Rightarrow y=8\) thế vào \(\frac{x}{y}=16\Rightarrow\frac{x}{8}=16\Rightarrow x=8.16=128\)
tìm x biếtxy2 =2vàxy =16(y≠0)
\(\Rightarrow x=y^2.2\)
Vì Y khác 0 nên y = 1
\(\Rightarrow x=1^2.2\)
\(\Rightarrow x=2\)
Vậy x = 2
Công thức tống quát:
\(1+\frac{1}{\left(n-1\right)\left(n+1\right)}=1+\frac{1}{n^2-1}=\frac{n^2-1+1}{n^2-1}=\frac{n^2}{n^2-1}\)
Theo đó, ta có:
\(1+\frac{1}{1.3}=1+\frac{1}{\left(2-1\right)\left(2+1\right)}=\frac{2^2}{2^2-1}\)
\(1+\frac{1}{2.4}=1+\frac{1}{\left(3-1\right)\left(3+1\right)}=\frac{3^2}{3^2-1}\)
\(1+\frac{1}{3.5}=\frac{1}{\left(4-1\right)\left(4+1\right)}=\frac{4^2}{4^2-1}\)
\(....................\)
\(1+\frac{1}{2015.2017}=1+\frac{1}{\left(2016-1\right)\left(2016+1\right)}=\frac{2016^2}{2016^2-1}\)
Nhân lần lượt các đẳng thức trên, ta được:
\(S=\frac{\left(2.3.4....2016\right)^2}{\left(2^2-1\right)\left(3^2-1\right)\left(4^2-1\right)...\left(2016^2-1\right)}=\frac{2^2.3^2.4^2...2016^2}{\left(1.3\right)\left(2.4\right)\left(3.5\right)....\left(2015.2017\right)}=\frac{2^2.3^2.4^2...2016^2}{1.2.3^2.4^2.5^2...2014^2.2015^2.2016.2017}=\frac{2.2016}{2017}\)
Do \(\left(x+\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^{1998}\ge0\)
Mà theo đề bài, \(\left(x+\frac{1}{2}\right)^2+\left(y-\frac{1}{2}\right)^{1998}=0\)
=> \(\hept{\begin{cases}\left(x+\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^{1998}=0\end{cases}}\)=> \(\hept{\begin{cases}x+\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{-1}{2}\\y=\frac{1}{2}\end{cases}}\)
Vì (x+1/2)^2 và (y-1/2)^1998 luôn lớn hơn hoặc bằng 0
=>(x+1/2)^2=0 và (y-1/2)^1998=0
x+1/2=0 và y-1/2=0
x=-1/2 và y=1/2
Vậy vời x=-1/2 ;y=1/2 thì (x+1/2)^2+(y-1/2)^1998=0
a) \(\left(1-\frac{2}{5}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{2}{9}\right)...\left(1-\frac{2}{99}\right)\)
\(=\frac{3}{5}.\frac{5}{7}.\frac{7}{9}...\frac{97}{99}\)
\(=\frac{3}{99}=\frac{1}{33}\)
b) Ta có: 2x = 8y+1 = (23)y+1 = 23y+3
=> x = 3y + 3 (1)
9y = 3x-9
=> (32)y = 3x-9
=> 32y = 3x-9
=> 2y = x - 9 (2)
Từ (1) và (2) => x + 2y = 3y + 3 + x - 9
=> x + y = 2y + x - 6
có ai đang onl thì tạo phòng với mình đê
\(\left(\frac{1}{2}x+y\right)\left(\frac{1}{2}x+y\right)=\left(\frac{1}{2}x+y\right)^2\)