Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(k\left(k+1\right)\left(k+2\right)=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\cdot4\)
\(=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\\ =\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\dfrac{1}{4}\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Từ đó ta được \(S=\dfrac{1}{4}\cdot1\cdot2\cdot3\cdot4-\dfrac{1}{4}\cdot0\cdot1\cdot2\cdot3+...+\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12-\dfrac{1}{4}\cdot8\cdot9\cdot10\cdot11\\ \Leftrightarrow S=\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12\\ \Leftrightarrow4S+1=9\cdot10\cdot11\cdot12+1=11881=109^2\left(đpcm\right)\)
\(S=1.2.3+2.3.4+3.4.5+...+9.10.11\)
\(4S=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+9.10.11.\left(12-8\right)\)
\(=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+...+9.10.11.12-8.9.10.11\)
\(=9.10.11.12\)
\(4S+1=9.10.11.12+1=\left(9.12\right).\left(10.11\right)+1=108.110+1\)
\(=\left(109-1\right)\left(109+1\right)+1=109^2-1+1=109^2\)
Ta có đpcm.
Ta có \(k\left(k+1\right)\left(k+2\right)=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\cdot4\)
\(=\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left[\left(k+3\right)-\left(k-1\right)\right]\\ =\dfrac{1}{4}k\left(k+1\right)\left(k+2\right)\left(k+3\right)-\dfrac{1}{4}\left(k-1\right)k\left(k+1\right)\left(k+2\right)\)
Từ đó ta được \(S=\dfrac{1}{4}\cdot1\cdot2\cdot3\cdot4-\dfrac{1}{4}\cdot0\cdot1\cdot2\cdot3+...+\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12-\dfrac{1}{4}\cdot8\cdot9\cdot10\cdot11\\ \Leftrightarrow S=\dfrac{1}{4}\cdot9\cdot10\cdot11\cdot12\\ \Leftrightarrow4S+1=9\cdot10\cdot11\cdot12+1=11881=109^2\left(đpcm\right)\)
đặt S=1.2.3+2.3.4+....+47.48.49
4S=1.2.3.(4-0)+2.3.4.(5-1)+...+47.48.49.(50-46)
4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+....+47.48.49.50-46.47.48.49
4S=47.48.49.50-1.2.3
S=(47.48.49.50-1.2.3):4
Tham khao:iải: Đặt A = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau.
Ta xét:
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100
tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó:
2A = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100)
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100
= 1/1.2 - 1/99.100
= 1/2 - 1/9900
= 4950/9900 - 1/9900
= 4949/9900.
Vậy A = 4949 / 9900
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{20.21.22}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{20.21.22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{20.21}-\frac{1}{21.22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{462}\right)=\frac{1}{2}.\frac{115}{231}=\frac{115}{462}\)
\(M=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{100.101.102}\right)\)
\(M=\frac{1}{2}.\left(1-\frac{1}{102}\right)\)
\(M=\frac{101}{204}< 1\left(đpcm\right)\)
Ta có: M=11.2.3 +12.3.4 +13.4.5 +...+1100.101.102
M=2.(11.2.3 +12.3.4 +13.4.5 +...+1100.101.102 ).12
M=(21.2.3 +22.3.4 +23.4.5 +...+2100.101.102 ).12
M=(11.2 -12.3 +12.3 -13.4 +13.4 -14.5 +...+1100.101 −1101.102 ).12
M=( 11.2 −1101.102 ).12
Mà 11.2 −1101.102 <1
Và 12 <1
=> (11.2 −1101.102 ) .12 <1
=> M <1
nhớ 9 k đó
2Q=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.........+\frac{1}{9.10}-\frac{1}{10.11}\)
2Q=\(\frac{1}{1.2}-\frac{1}{10.11}\)
2Q=\(\frac{1}{2}-\frac{1}{110}\)
2Q=\(\frac{55}{110}-\frac{1}{110}\)
2Q=\(\frac{54}{110}\)
Q=\(\frac{54}{110}:2\)
Q=\(\frac{27}{110}\)
bằng 27/100