Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=10101\cdot\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{111111}\right)\)
\(=10101\cdot\left(\dfrac{2}{222222}+\dfrac{5}{222222}\right)\)
\(=10101\cdot\dfrac{1}{31746}=\dfrac{7}{22}\)
10101 . \(\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
= 10101 . \(\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
= 10101 . \(\frac{7}{222222}\)
= \(\frac{7}{22}\)
Lời giải:
Ta có:
\(A=10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(=10101.\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{111111}\right)\)
\(=10101.\left(\frac{10}{222222}+\frac{5}{222222}-\frac{8}{222222}\right)\)
\(=10101.\left(\frac{10+5-8}{222222}\right)\)
\(=10101.\frac{7}{222222}\)
\(=\frac{7.10101}{22.10101}=\frac{7}{22}\)
Chúc bạn học tốt!Tick cho mình nhé!
\(C=\frac{1.2.3+2.3.4+3.4.5+4.5.6+5.6.7}{3.3.2.3.3.1+2.3.3.3.4.3+3.3.4.3.3.5+3.4.5.3.6.3+3.5.3.6.7.3}+\frac{8}{27}\)
\(C=\frac{1.2.3+2.3.4+3.4.5+4.5.6+5.6.7}{3^3.\left(1.2.3+2.3.4+3.4.5+4.5.6+5.6.7\right)}+\frac{8}{27}\)
\(C=\frac{1}{3^3}+\frac{8}{27}=\frac{1}{27}+\frac{8}{27}=\frac{9}{27}=\frac{1}{3}\)
Vậy C = \(\frac{1}{3}\)
a)
\(\begin{array}{l}\frac{{13}}{{23}}.\frac{7}{{11}} + \frac{{10}}{{23}}.\frac{7}{{11}}\\ = \frac{7}{{11}}.\left( {\frac{{13}}{{23}} + \frac{{10}}{{23}}} \right)\\ = \frac{7}{{11}}.\frac{23}{23}\\ = \frac{7}{{11}}.1\\ = \frac{7}{{11}}\end{array}\)
b)
\(\begin{array}{l}\frac{5}{9}.\frac{{23}}{{11}} - \frac{1}{{11}}.\frac{5}{9} + \frac{5}{9}\\ = \frac{5}{9}.\left( {\frac{{23}}{{11}} - \frac{1}{{11}} + 1} \right)\\ = \frac{5}{9}.\left( {2 + 1} \right)\\ = \frac{5}{9}.3 = \frac{5}{3}\end{array}\)
c)
\(\begin{array}{l}\left[ {\left( { - \frac{4}{9} + \frac{3}{5}} \right):\frac{{13}}{{17}}} \right] + \left( {\frac{2}{5} - \frac{5}{9}} \right):\frac{{13}}{{17}}\\ = \left( { - \frac{4}{9} + \frac{3}{5}} \right).\frac{{17}}{{13}} + \left( {\frac{2}{5} - \frac{5}{9}} \right).\frac{{17}}{{13}}\\ = \frac{{17}}{{13}}.\left( { - \frac{4}{9} + \frac{3}{5} + \frac{2}{5} - \frac{5}{9}} \right)\\ = \frac{{17}}{{13}}.\left[ {\left( { - \frac{4}{9} - \frac{5}{9}} \right) + \left( {\frac{3}{5} + \frac{2}{5}} \right)} \right]\\ =\frac{{17}}{{13}}. (\frac{-9}{9}+\frac{5}{5})\\= \frac{{17}}{{13}}.\left( { - 1 + 1} \right)\\ = \frac{{17}}{{13}}.0 = 0\end{array}\)
d)
\(\begin{array}{l}\frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{3}{{11}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{2}{5}} \right)\\ = \frac{3}{{16}}:\left( {\frac{3}{{22}} - \frac{6}{{22}}} \right) + \frac{3}{{16}}:\left( {\frac{1}{{10}} - \frac{4}{{10}}} \right)\\ = \frac{3}{{16}}:\frac{{ - 3}}{{22}} + \frac{3}{{16}}:\frac{{ - 3}}{{10}}\\ = \frac{3}{{16}}.\frac{{ - 22}}{3} + \frac{3}{{16}}.\frac{{ - 10}}{3}\\ = \frac{3}{{16}}.\left( {\frac{{ - 22}}{3} + \frac{{ - 10}}{3}} \right)\\ = \frac{3}{{16}}.\frac{{ - 32}}{3}\\ = - 2\end{array}\)
Đặt C =\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{n\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)
\(\Rightarrow C=\left(\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\div2\)
b: \(=8.2\left(11+\dfrac{94}{1591}-6-\dfrac{38}{1517}\right):\left(8+\dfrac{11}{43}\right)\)
\(=\dfrac{41}{5}\cdot\left(5+\dfrac{60}{1763}\right):\dfrac{355}{43}\)
\(=\dfrac{41}{5}\cdot\dfrac{8875}{1763}\cdot\dfrac{43}{355}\)
\(=5\)
c: \(=10101\cdot\left(\dfrac{10+5}{222222}-\dfrac{4}{111111}\right)\)
\(=10101\cdot\dfrac{7}{222222}=\dfrac{7}{22}\)
A = 1.2.3+23.1.2.3+33.1.2.3+43.1.2.3 /3.4.5+23.3.4.5+33.3.4.5+43.3.4.5
=1.2.3 (1+23+33+43)/3.4.5 (1+23+33+43)
=1.2.3/3.4.5
=1/10
B=10101 ( 15/333333 + 2/333333 +57 / 333333 )
B=10101 . 74 /333333
=74/33
bai....................kho......................wa.....................troi.........................thi.................lanh...............lai....................mua...................tich....................ung.....................ho..................minh....................nha.......................huhu