Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/15 + 1/35 + 1/ 63 + 1/99 + ...+ 1/9999
A = 1/(3x5) + 1/(5x7) + 1/(7x9) + 1/(9x11) + ... + 1/(99 x 101)
Ax2 = 2/(3x5) + 2/(5x7) + 2/(7x9) + 2/(9x11) + ... + 2/(99 x 101)
Ax2 = 1/3 – 1/5 + 1/5 – 1/7 + 1/7 – 1/9 + 1/9 – 1/11 + ...+ 1/99 – 1/101
Ax2 = 1/3 – 1/101 = 98/303
A = 98/303 : 2
A = 49/303
A=\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
=\(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
Quy đồng tính tiếp
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{9999}\)
\(\Rightarrow\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{99.101}\)
\(\Rightarrow\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\right)\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\Rightarrow\frac{1}{2}\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(\Rightarrow\frac{1}{2}.\frac{98}{303}\)
\(\Rightarrow\frac{49}{303}\)
49/303,xin lỗi bạn mk làm biếng viết lời giải nếu cần nói mk nha
1/15 + 1/35 + 1/63 + 1/99 + ... + 1/9999 =
= 1/(3x5) + 1/(5x7) + 1/(7x9) + ... + 1/(99x101)
= (1/3 - 1/5 + 1/5 - 1/7 + 1/7 - 1/9 + ...+ 1/99 - 1/101) : 2
= (1/3 - 1/101) : 2
= 98/303 : 2
= 49/303
ĐS: 49/303
Tick nha
Ta có:
\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+...+\frac{1}{2915}+\frac{1}{3135}\)
Coi \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}+\frac{1}{55.57}\)
\(\Rightarrow2A=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+...+\frac{1}{53.55}+\frac{1}{55.57}\right)\)
\(=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+...+\frac{2}{53.55}+\frac{2}{55.57}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{53}-\frac{1}{55}+\frac{1}{55}-\frac{1}{57}\)
\(=\frac{1}{3}-\frac{1}{57}\)
\(=\frac{19}{57}-\frac{1}{57}=\frac{18}{570}=\frac{6}{19}\)
\(\Rightarrow A=\frac{6}{19}:2=\frac{3}{19}\)
Vậy tổng trên bằng \(\frac{3}{19}\)
Tổng các số đó là:
\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+...+\dfrac{1}{399}\)
\(=\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+\dfrac{1}{7\times9}+...+\dfrac{1}{19\times21}\)
\(=\dfrac{1}{2}\times\left(\dfrac{2}{1\times3}+\dfrac{2}{3\times5}+\dfrac{2}{5\times7}+\dfrac{2}{7\times9}+...+\dfrac{2}{19\times21}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{19}-\dfrac{1}{21}\right)\)
\(=\dfrac{1}{2}\times\left(1-\dfrac{1}{21}\right)\)
\(=\dfrac{1}{2}\times\dfrac{20}{21}\)
\(=\dfrac{10}{21}\)
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{63}\) +...+
A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\)+ \(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\)+...+
Xét dãy số 1; 3; 5; 7;...; Đây là dãy số cách đều với khoảng cách là
3 - 1 = 2
Số thứ 10 của dãy số trên là 2 x (10 - 1) + 1 = 19
Vậy tổng của mười phân số đầu tiên của tổng A là:
A = \(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\) +....+ \(\dfrac{1}{19.21}\)
A = \(\dfrac{2}{2}\).(\(\dfrac{1}{1.3}\) + \(\dfrac{1}{3.5}\) + \(\dfrac{1}{5.7}\) + \(\dfrac{1}{7.9}\) +...+ \(\dfrac{1}{19.21}\)
A = \(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\) + \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) + \(\dfrac{2}{7.9}\)+...+ \(\dfrac{2}{19.21}\))
A = \(\dfrac{1}{2}\). (\(\dfrac{1}{1}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{7}\) + ...+ \(\dfrac{1}{19}\) - \(\dfrac{1}{21}\)
A = \(\dfrac{1}{2}\).( \(\dfrac{1}{1}\) - \(\dfrac{1}{21}\))
A = \(\dfrac{1}{2}\). \(\dfrac{20}{21}\)
A = \(\dfrac{10}{21}\)
A=\(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+..+\frac{1}{9999}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+..+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+..+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{98}{303}=\frac{49}{303}\)
\(\frac{1}{15}+\frac{1}{35}+...+\frac{1}{399}\)
\(=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{19.21}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\left(\frac{7}{21}-\frac{1}{21}\right)\)
\(=\frac{1}{2}.\frac{6}{21}\)
\(=\frac{1}{7}\)
Chúc bạn học tốt !!!
\(A=\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+...+\frac{1}{399}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{19.21}\)
\(2A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{19.21}\)
\(2A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)
\(2A=\frac{1}{3}-\frac{1}{21}=\frac{7}{21}-\frac{1}{21}=\frac{6}{21}=\frac{2}{7}\)
\(A=\frac{2}{7}:2=\frac{2}{7}.\frac{1}{2}=\frac{2}{14}=\frac{1}{7}\)