Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1/3 + 1/3^2 + 1/3^3 + 1/3^4 + ... + 1/3^99 + 1/3^100
3S = 1 +1/3 +1/3^2 +1/3^3 + ... + 1/3^98 +1/3^99
3S - S = ( 1 + 1/3 + 1/3^2 +1/^3 + ... + 1/3^98 +1/3^99 ) - ( 1/3 + 1/3^2 + 1/3^3 + 1/3^4 +... + 1/3^99 + 1/3^100 )
2S = 1 - 1/3^100
S = (1 - 1/3^100). 1/2
`3A=-1+1/3-1/3^2+.....+1/3^99-1/3^100`
`=>3A+A=4A=-1-1/3^101`
`=>A=(-1-1/3^101)/4`
\(A=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\\ \Leftrightarrow3A=3\left(+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\\ =1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
Lấy 3A - A ta được
\(3A-A=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\\
2A=1-\dfrac{1}{3^{100}}\\
\Leftrightarrow A=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)
2A=1-1/2+1/2^2-...+1/2^98-1/2^99
=>3A=1-1/2^100
=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)
Ta có `3A=1+1/3+....+1/3^99`
`=>3A-A=1-1/3^100`
`=>2A=1-1/3^100`
`=>A=1/2-1/(2.3^100)<1/2`
Hay `A<B`
D = \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+ \(\dfrac{1}{3^{100}}\)
3.D = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) +...+ \(\dfrac{1}{3^{99}}\)
3D - D = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{3^{99}}\) - (\(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{3^3}\)+...+\(\dfrac{1}{3^{100}}\))
2D = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{3^2}\) + ... + \(\dfrac{1}{3^{99}}\) - \(\dfrac{1}{3}\) - \(\dfrac{1}{3^2}\) - \(\dfrac{1}{3^3}\)-...-\(\dfrac{1}{3^{100}}\)
2D = (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) + (\(\dfrac{1}{3^2}\) - \(\dfrac{1}{3^2}\)) + (\(\dfrac{1}{3^3}\)-\(\dfrac{1}{3^3}\))+...+(\(\dfrac{1}{3^{99}}\)-\(\dfrac{1}{3^{99}}\)) + (1 - \(\dfrac{1}{3^{100}}\))
2D = 0 + 0 + 0 +...+0 + 1 - \(\dfrac{1}{3^{100}}\)
2D = 1 - \(\dfrac{1}{3^{100}}\)
2D = \(\dfrac{3^{100}-1}{3^{100}.2}\)
\(B=\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\)
\(\Rightarrow3B=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\)
\(\Rightarrow3B-B=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{100}}\right)\)
\(\Rightarrow2B=1-\dfrac{1}{3^{100}}\)
\(\Rightarrow B=\dfrac{1-\dfrac{1}{3^{100}}}{2}\)