Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(B=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(\frac{-3}{4}-\frac{2}{9}-\frac{1}{36}+\frac{1}{72}\right)\)
\(B=\left(\frac{5}{15}+\frac{9}{15}+\frac{1}{15}\right)+\left(\frac{-54}{72}-\frac{16}{72}-\frac{2}{72}+\frac{1}{72}\right)\)
\(B=1-\frac{71}{72}\)
\(B=\frac{72}{72}-\frac{71}{72}\)
\(B=\frac{1}{72}\)
vay \(B=\frac{1}{72}\)
A= 1/3- 3/4+ 3/5+ 1/72- 2/9- 1/36+ 1/15
A= ( 1/3- 3/5+ 1/15) - (3/4- 1/72+ 2/9+ 1/36)
A= (5/15- 9/15+ 1/15) - (54/72- 1/72+ 16/72+ 2/36)
A= 1- 71/72
A= 1/72
\(A=\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow A=\frac{1}{3}+\frac{-3}{4}+\frac{3}{5}+\frac{1}{72}+\frac{-2}{9}+\frac{-1}{36}+\frac{1}{15}\)
\(\Rightarrow A=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)+\left(\frac{-3}{4}+\frac{-2}{9}+\frac{-1}{36}\right)+\frac{1}{72}\)
\(\Rightarrow A=1+\left(-1\right)+\frac{1}{72}\)
\(\Rightarrow A=0+\frac{1}{72}\)
\(\Rightarrow A=\frac{1}{72}\)
\(\frac{1}{3}-\frac{3}{4}-\left(-\frac{3}{5}\right)+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}+\frac{3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{72}=1-1+\frac{1}{72}=\frac{1}{72}\)
\(A=\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}=\left(\frac{1}{3}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)+\frac{1}{72}\\ =\frac{1}{9}-\frac{7}{9}+\frac{2}{3}+\frac{1}{72}=-\frac{2}{3}+\frac{2}{3}+\frac{1}{72}=\frac{1}{72}\)
1/3*(-3)/4 - -3/5+ 1/72*(-2)/9*(-1)/36 + 1/15
= 1/72
Đảm bảo 100 % là đúng
Ta có: \(A=\frac{1}{3}-\frac{3}{4}-\frac{-3}{5}+\frac{1}{72}-\frac{2}{9}-\frac{1}{36}+\frac{1}{15}\)
\(\Rightarrow A=\left(\frac{1}{3}-\frac{-3}{5}+\frac{1}{15}\right)-\left(\frac{3}{4}+\frac{2}{9}+\frac{1}{36}\right)+\frac{1}{72}\)
\(\Rightarrow A=\left(\frac{5}{15}+\frac{9}{15}+\frac{1}{15}\right)-\left(\frac{54}{72}+\frac{16}{72}+\frac{2}{72}\right)+\frac{1}{72}\)
\(\Rightarrow A=1-1+\frac{1}{72}\)
\(\Rightarrow A=\frac{1}{72}\)
Vậy \(A=\frac{1}{72}\)
C = 1/100 - ( 1/2.1 + 1/3.2 + ... + 1/98.97 + 1/99.98 + 1/100.99
C = 1/100 - ( 1- 1/2+ 1/2 - 1/3 + ... + 1/97 - 1/98 + 1/98 - 1/99 + 1/99 - 1/100 )
C = 1/100 - ( 1 - 1/100 )
C = 1/100 - 99/100
C = \(\frac{-49}{50}\)