Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{2^8}=\sqrt{16^2}=16\)
vô danh
\(M=\sqrt{\frac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(M=\sqrt{\frac{2^{20}.\left(2^{10}-1\right)}{2^{12}.\left(2^{10}-1\right)}}\)
\(M=\sqrt{\frac{2^{20}}{2^{12}}}\)
\(M=\sqrt{2^{20-12}}\)
\(M=\sqrt{2^8}\)
\(M=16\)
vậy \(M=16\)
P/S Đừng ai coppy bài mình nha
a, ta có
\(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}< 3+4< 7\) (1)
lại có \(\sqrt{65}-1>\sqrt{64}-1>8-1>7\) (2)
từ (1) và(2) =>\(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)
bài 2
\(M=\sqrt{\frac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{\frac{2^{20}}{2^{12}}}=\sqrt{2^8}=2^4\)
\(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\dfrac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}\)
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(M=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)
\(M=\sqrt{2^8}=16\)
cho P = \(\frac{\sqrt{x}+2}{\sqrt{x}+1}\) , Tìm GTLN của P
\(M=\sqrt{\frac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)
\(=\sqrt{\frac{2^{20}}{2^{12}}}\)
\(=\sqrt{2^8}\)
\(=2^4\)
\(=16\)
=.= hok tốt!!