Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\dfrac{\left(2^3\right)^{10}-\left(2^2\right)^{10}}{\left(2^2\right)^{11}-\left(2^3\right)^4}}\)
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(M=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)
\(M=\sqrt{2^8}=16\)
\(M=\sqrt{\frac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(=\sqrt{\frac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}\)
\(=\sqrt{\frac{2^{20}}{2^{12}}}\)
\(=\sqrt{2^8}\)
\(=2^4\)
\(=16\)
=.= hok tốt!!
Không dùng máy tính bỏ túi, tính \(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}\)
Ta có:
\(8^{10}-4^{10}=4^{10}\left(2^{10}-1\right)=4^6.4^4\left(2^{10}-1\right)=2^{12}.4^4\left(2^{10}-1\right)\)
\(4^{11}-8^4=4^4\left(4^7-2^4\right)=4^4\left(2^{14}-2^4\right)=4^4.2^4\left(2^{10}-1\right)\)
Do đó: \(\dfrac{8^{10}-4^{10}}{4^{11}-8^4}=\dfrac{2^{12}.4^4\left(2^{10}-1\right)}{2^4.4^4\left(2^{10}-1\right)}=\dfrac{2^{12}}{2^4}=2^{12-4}=2^8\)
Vậy \(M=\sqrt{\dfrac{8^{10}-4^{10}}{4^{11}-8^4}}=\sqrt{2^8}=\sqrt{\left(2^4\right)^2}=2^4=16\)
\(\dfrac{1}{\sqrt{11-2\sqrt{30}}}-\dfrac{3}{\sqrt{7-2\sqrt{10}}}+\dfrac{4}{\sqrt{8+4\sqrt{3}}}\)
\(=\dfrac{1}{\sqrt{11-2.\sqrt{6}.\sqrt{5}}}-\dfrac{3}{\sqrt{7-2.\sqrt{5}.\sqrt{2}}}+\dfrac{4}{\sqrt{2\left(4+2\sqrt{3}\right)}}\)
\(=\dfrac{1}{\sqrt{\left(\sqrt{6}+\sqrt{5}\right)^2}}-\dfrac{3}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)2}}+\dfrac{4}{\sqrt{2\left(\sqrt{3}+1\right)^2}}\)
\(=\dfrac{1}{\sqrt{6}+\sqrt{5}}-\dfrac{3}{\sqrt{5}+\sqrt{2}}+\dfrac{2\sqrt{2}}{\sqrt{3}+1}\)
\(=\dfrac{\sqrt{6}-\sqrt{5}}{\left(\sqrt{6}+\sqrt{5}\right)\left(\sqrt{6}-\sqrt{5}\right)}-\dfrac{3\left(\sqrt{5}-\sqrt{2}\right)}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}+\dfrac{2\sqrt{2}\left(\sqrt{3}-1\right)}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\sqrt{6}-\sqrt{5}+\sqrt{5}-\sqrt{2}+\sqrt{6}-\sqrt{2}=2\sqrt{6}-2\sqrt{2}\)
vô danh
\(M=\sqrt{\frac{8^{10}-4^{10}}{4^{11}-8^4}}\)
\(M=\sqrt{\frac{2^{30}-2^{20}}{2^{22}-2^{12}}}\)
\(M=\sqrt{\frac{2^{20}.\left(2^{10}-1\right)}{2^{12}.\left(2^{10}-1\right)}}\)
\(M=\sqrt{\frac{2^{20}}{2^{12}}}\)
\(M=\sqrt{2^{20-12}}\)
\(M=\sqrt{2^8}\)
\(M=16\)
vậy \(M=16\)
P/S Đừng ai coppy bài mình nha
\(C=\dfrac{\sqrt{10}-\sqrt{5}+2\sqrt{2}+\sqrt{5}-\sqrt{10}-1}{2\sqrt{2}+2+2\sqrt{2}-1+2\sqrt{2}+2}\)
\(=\dfrac{2\sqrt{2}-1}{6\sqrt{2}+3}=\dfrac{9-4\sqrt{2}}{21}\)
\(B=\dfrac{40}{6+2\sqrt{5}+\sqrt{4\sqrt{5}+4}}\)
\(=\dfrac{40}{\left(\sqrt{5}+1\right)^2+2\sqrt{\sqrt{5}+1}}\)
\(=\dfrac{40}{\sqrt{\sqrt{5}+1}\left(\sqrt{\sqrt{5}+1}+2\right)}\)
\(=\dfrac{40\sqrt{\sqrt{5}-1}}{2\left(\sqrt{\sqrt{5}+1}+2\right)}\)
\(=\dfrac{20\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)}{\sqrt{5}+1-4}\)
\(=\dfrac{20\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)}{-3+\sqrt{5}}\)
\(=-5\left(3+\sqrt{5}\right)\left(\sqrt{\sqrt{5}-1}\right)\left(\sqrt{\sqrt{5}+1}-2\right)\)
1.\(\left(\sqrt{2}+1\right)^3-\left(\sqrt{2}-1\right)^3=2\sqrt{2}+6+3\sqrt{2}+1-\left(2\sqrt{2}-6+3\sqrt{2}-1\right)=14\)
2.\(\sqrt{4-\sqrt{15}}+\sqrt{4+\sqrt{15}}-2\sqrt{3-\sqrt{5}}\)
\(=\sqrt{\dfrac{1}{2}\left(8-2\sqrt{3.}\sqrt{5}\right)}+\sqrt{\dfrac{1}{2}\left(8+2.\sqrt{3}.\sqrt{5}\right)}-\sqrt{2}\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\dfrac{1}{2}\left(\sqrt{3}-\sqrt{5}\right)^2}+\sqrt{\dfrac{1}{2}\left(\sqrt{3}+\sqrt{5}\right)^2}-\sqrt{2}\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\dfrac{\sqrt{2}}{2}\left|\sqrt{3}-\sqrt{5}\right|+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left|\sqrt{5}-1\right|\)
\(=\dfrac{\sqrt{2}}{2}\left(\sqrt{5}-\sqrt{3}\right)+\dfrac{\sqrt{2}}{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{2}\left(\sqrt{5}-1\right)\)
\(=\sqrt{5}.\sqrt{2}-\sqrt{2}\left(\sqrt{5}-1\right)=\sqrt{2}\)
3.\(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}=\dfrac{\sqrt{20}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}+\dfrac{8\left(1+\sqrt{5}\right)}{1-\left(\sqrt{5}\right)^2}\)
\(=\sqrt{20}+\dfrac{8\left(1+\sqrt{5}\right)}{-4}=2\sqrt{5}-2\left(1+\sqrt{5}\right)=-2\)
4.\(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\dfrac{4-2\sqrt{3}}{4+2\sqrt{3}}}+\sqrt{\dfrac{4+2\sqrt{3}}{4-2\sqrt{3}}}\)\(=\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}+1\right)^2}}+\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}-1\right)^2}}\)
\(=\dfrac{\left|\sqrt{3}-1\right|}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\left|\sqrt{3}-1\right|}=\dfrac{\sqrt{3}-1}{\sqrt{3}+1}+\dfrac{\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)^2+\left(\sqrt{3}+1\right)^2}{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}=\dfrac{8}{3-1}=4\)
3: Ta có: \(\dfrac{10+2\sqrt{10}}{\sqrt{5}+\sqrt{2}}+\dfrac{8}{1-\sqrt{5}}\)
\(=\dfrac{2\sqrt{5}\left(\sqrt{5}+\sqrt{2}\right)}{\sqrt{5}+\sqrt{2}}-\dfrac{8\left(\sqrt{5}+1\right)}{\left(\sqrt{5}-1\right)\left(\sqrt{5}+1\right)}\)
\(=2\sqrt{5}-2\left(\sqrt{5}+1\right)\)
=-2
4) Ta có: \(\sqrt{\dfrac{2-\sqrt{3}}{2+\sqrt{3}}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}\)
\(=\sqrt{\left(2-\sqrt{3}\right)^2}+\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+2+\sqrt{3}\)
=4
a: Ta có: \(\sqrt{75}-2\sqrt{27}+\sqrt{48}\)
\(=5\sqrt{3}-2\cdot3\sqrt{3}+4\sqrt{3}\)
\(=3\sqrt{3}\)
c: Ta có: \(\sqrt{8+2\sqrt{7}}-\sqrt{11-4\sqrt{7}}\)
\(=\sqrt{7}+1-\sqrt{7}+2\)
=3
\(M=\sqrt{\dfrac{2^{30}-2^{20}}{2^{22}-2^{12}}}=\sqrt{\dfrac{2^{20}\left(2^{10}-1\right)}{2^{12}\left(2^{10}-1\right)}}=\sqrt{2^8}=\sqrt{16^2}=16\)