K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2018

nhiều thế, đăng ít một thôi bạn

24 tháng 8 2018

a/ \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=2\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)...\left(3^{64}+1\right)\)

\(\Rightarrow2A=3^{128}-1\Rightarrow A=\dfrac{3^{128}-1}{2}\)

a) \(A=\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(5x+5\right)^2\)

\(A=\left[\left(3x+1\right)-\left(5x+5\right)\right]^2\)

\(A=\left(-2x-4\right)^2\)

30 tháng 9 2017

A = (3x + 1)2 - 2(3x + 1)(5x + 5) + (5x + 5)2

= [(3x + 1)-(5x + 5)]2

= (3x + 1 - 5x - 5)2

= [(-2x) - 4]2

B = (3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

=> (3 - 1)B = (3 - 1)(3 + 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

=>2B = (32 - 1)(32 + 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

= (34 - 1)(34 + 1)(38 + 1)(316 +1)(332 + 1)

= (38 - 1)(38 + 1)(316 +1)(332 + 1)

= (316 - 1)316 +1)(332 + 1)

= (332 - 1)(332 + 1)

= 364 - 1

vì 2B = 364 - 1

=> B = \(\dfrac{3^{64}-1}{2}\)

C = a2 + b2 + c2 + 2ab - 2ac - 2bc + a2 + b2 + c2 - 2ab + 2ac - 2bc - 2( b2 - 2bc + c2)

= 2a2 + 2b2 + 2c2 - 4bc - 2b2 + 4bc - 2c2

= 2a2

18 tháng 6 2018

a. \(\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=a^2+b^2+c^2+2ab+2bc+2ac+a^2+b^2+c^2-2ab+2bc-2ac+c^2+a^2+b^2-2bc+2ac-2ab+a^2+b^2+c^2+2ab-2ac-2bc=4\left(a^2+b^2+c^2\right)\)b. Bạn làm tương tự câu a , đáp số ra : \(4\left(a^2+b^2+c^2+d^2\right)\)

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Lời giải:
\(-A=\frac{a^2}{(a-b)(c-a)}+\frac{b^2}{(a-b)(b-c)}+\frac{c^2}{(c-a)(b-c)}\)

\(=\frac{a^2(b-c)+b^2(c-a)+c^2(a-b)}{(a-b)(b-c)(c-a)}=\frac{a^2b+b^2c+c^2a-(ab^2+bc^2+ca^2)}{-[(a^2b+b^2c+c^2a)-(ab^2+bc^2+ca^2)]}=-1\)

$\Rightarrow A=1$

a: \(\left(a^2-b^2\right)^2+\left(2ab\right)^2\)

\(=a^4-2a^2b^2+b^4+4a^2b^2\)

\(=a^4+2a^2b^2+b^4=\left(a^2+b^2\right)^2\)

b: \(\left(ac+bd\right)^2+\left(ad-bc\right)^2\)

\(=a^2c^2+b^2d^2+a^2d^2+b^2c^2\)

\(=c^2\left(a^2+b^2\right)+d^2\left(a^2+b^2\right)\)

\(=\left(a^2+b^2\right)\left(c^2+d^2\right)\)

c: \(\left(ax+b\right)^2+\left(a-bx\right)^2+c^2x^2\)

\(=a^2x^2+b^2+a^2+b^2x^2+c^2x^2\)

\(=a^2\left(x^2+1\right)+b^2\left(x^2+1\right)+c^2x^2\)

\(=\left(x^2+1\right)\left(a^2+b^2\right)+c^2x^2\)

16 tháng 6 2016

a,Ta đặt : 

a-b-c=x ; b-c-a=y ; c-a-b=z

Ta có:

\(\text{x+y+z=a-b-c+b-c-a+c-a-b=-(a+b+c)}\)

\(\Rightarrow\left(x+y+z\right)^2=\left(a+b+c\right)^2\)

\(\Rightarrow\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=\left(x+y+z\right)^2+x^2+y^2+z^2\)

\(\Rightarrow\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=\left(x+y\right)^2+\left(y+z\right)^2+\left(x+z\right)^2\)\(\Rightarrow\left(a+b+c\right)^2+\left(a-b-c\right)^2+\left(b-c-a\right)^2+\left(c-a-b\right)^2=4\left(a^2+b^2+c^2\right)\)