Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1/3 -. 3 /4 + 3/5 + 1/64 -2/ 9 - 1 /36 +1/ 15
A = ( 1 /3 +3 /5 +1/ 15) - ( 3/4 -2/9 -1/ 36) + 1/64
A =1-1 +1/64 = 1/64
Muốn cho số có hai chữ số giống nhau và chia hết cho 2 thì số đó phải là một trong các số 22, 44, 66, 88. Bây giờ ta tìm trong những số này số mà chia cho 5 thì dư 3.
Đó là số 88.
Xem thêm tại: http://loigiaihay.com/bai-99-trang-39-sgk-toan-6-tap-1-c41a3896.html#ixzz4xczZ4dOb
a) \(\frac{-1}{2}+\frac{-1}{9}-\frac{-3}{5}+\frac{1}{2006}-\frac{-2}{7}-\frac{7}{18}+\frac{4}{35}\)
\(=\left(\frac{-1}{2}-\frac{1}{9}-\frac{7}{18}\right)+\left(\frac{3}{5}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9}{18}-\frac{2}{18}-\frac{7}{18}\right)+\left(\frac{21}{35}+\frac{4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-9-2-7}{18}\right)+\left(\frac{21+4}{35}\right)+\frac{1}{2006}\)
\(=\left(\frac{-18}{18}\right)+\left(\frac{25}{35}\right)+\frac{1}{2006}\)
\(=\left(-1\right)+\frac{5}{7}+\frac{1}{2006}\)\(=\frac{-4005}{14042}\)
b) \(\frac{1}{3}-\frac{3}{4}+\frac{3}{5}+\frac{1}{2007}-\frac{1}{36}+\frac{1}{15}-\frac{2}{9}\)
\(=\left(\frac{1}{3}+\frac{1}{2007}-\frac{2}{9}\right)-\left(\frac{3}{4}+\frac{1}{36}\right)+\left(\frac{3}{5}+\frac{1}{15}\right)\)
\(=\left(\frac{669}{2007}+\frac{1}{2007}-\frac{446}{2007}\right)-\left(\frac{27}{36}+\frac{1}{36}\right)+\left(\frac{9}{15}+\frac{1}{15}\right)\)
\(=\frac{224}{2007}-\frac{28}{36}+\frac{10}{15}\)
\(=\frac{224}{2007}-\frac{1561}{2007}+\frac{1338}{2007}\)\(=\frac{1}{2007}\)
a) \(\frac{1}{3}.\frac{-6}{13}.\frac{-9}{10}.\frac{-13}{36}\)
\(=\left(\frac{1}{3}.\frac{-9}{10}\right)\left(\frac{-6}{13}.\frac{-13}{36}\right)\)
\(=\frac{-3}{10}.\frac{1}{6}\)
\(=\frac{-1}{20}\)
b) \(\frac{-1}{3}.\frac{-15}{17}.\frac{34}{45}\)
\(=\frac{-1}{3}.\frac{-2}{3}\)
\(=\frac{2}{9}\)
c) \(\left(1-\frac{1}{5}\right)\left(\frac{-3}{10}+\frac{1}{5}\right)\)
\(=\frac{4}{5}.\frac{-1}{10}\)
\(=\frac{-2}{25}\)
d) \(A=\frac{1}{3}.\frac{4}{5}+\frac{1}{3}.\frac{6}{5}+\frac{2}{3}\)
\(=\frac{1}{3}\left(\frac{4}{5}+\frac{6}{5}\right)+\frac{2}{3}\)
\(=\frac{1}{3}.2+\frac{2}{3}\)
\(=\frac{2}{3}+\frac{2}{3}\)
\(=\frac{4}{3}\)
e) \(11\frac{1}{4}-\left(2\frac{5}{7}+5\frac{1}{4}\right)\)
\(=\left(11\frac{1}{4}-5\frac{1}{4}\right)-2\frac{5}{7}\)
\(=6-2\frac{5}{7}\)
\(=5\frac{7}{7}-2\frac{5}{7}\)
\(=3\frac{2}{7}\)
\(1)A=\frac{\frac{2}{5}+\frac{2}{7}-\frac{2}{9}-\frac{2}{11}}{\frac{4}{5}+\frac{4}{7}-\frac{4}{9}-\frac{4}{11}}\)
\(=\frac{2\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}{4\left(\frac{1}{5}+\frac{1}{7}-\frac{1}{9}-\frac{1}{11}\right)}\)
\(=\frac{2}{4}=\frac{1}{2}\)
\(2)B=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}\)
\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}.\frac{4.4}{4.5}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}\)
\(=\frac{1.2.3.4}{2.3.4.5}=\frac{1}{5}\)
\(3)C=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.\frac{5^2}{4.6}\)
\(=\frac{2.2.3.3.4.4.5.5}{1.3.2.4.3.5.4.6}\)
\(=\frac{2.5}{1.6}=\frac{2.5}{1.3.2}=\frac{5}{3}\)
\(4)D=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{1}{5}-\frac{1}{6}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right)\left(\frac{6}{30}-\frac{5}{30}-\frac{1}{30}\right)\)
\(=\left(\frac{150}{1111}+\frac{5}{75}-\frac{14}{77}\right).0=0\)
\(5)M=8\frac{2}{7}-\left(3\frac{4}{9}+3\frac{9}{7}\right)\) \(N=\left(10\frac{2}{9}+2\frac{3}{5}\right)-6\frac{2}{9}\)
\(=\frac{58}{7}-\left(\frac{31}{9}+\frac{30}{7}\right)\) \(=\left(\frac{92}{9}+\frac{13}{5}\right)-\frac{56}{9}\)
\(=\frac{58}{7}-\left(\frac{217}{63}+\frac{270}{63}\right)\) \(=\left(\frac{460}{45}+\frac{117}{45}\right)-\frac{280}{45}\)
\(=\frac{58}{7}-\frac{487}{63}\) \(=\frac{577}{45}-\frac{280}{45}\)
\(=\frac{522}{63}-\frac{487}{63}=\frac{5}{9}\) \(=\frac{33}{5}\)
\(P=M-N\)
\(\Rightarrow P=\frac{5}{9}-\frac{33}{5}\)
\(\Rightarrow P=\frac{25}{45}-\frac{297}{45}\)
\(\Rightarrow P=\frac{-272}{45}\)
Vậy P = \(\frac{-272}{45}\)
\(6)E=10101\left(\frac{5}{111111}+\frac{5}{222222}-\frac{4}{3.7.11.13.37}\right)\)
\(=\frac{5}{11}+\frac{5}{22}-\left(10101.\frac{4}{111111}\right)\)
\(=\frac{10}{22}+\frac{5}{22}-\frac{4}{11}\)
\(=\frac{15}{22}-\frac{8}{22}=\frac{7}{22}\)
\(7)F=\frac{\frac{1}{3}+\frac{1}{7}-\frac{1}{13}}{\frac{2}{3}+\frac{2}{7}-\frac{2}{13}}.\frac{\frac{3}{4}-\frac{3}{16}-\frac{3}{256}+\frac{3}{64}}{1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}}+\frac{5}{8}\)
\(=\frac{1\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}{2\left(\frac{1}{3}+\frac{1}{7}-\frac{1}{13}\right)}.\frac{3\left(\frac{1}{4}-\frac{1}{16}-\frac{1}{256}+\frac{1}{64}\right)}{1\left(1-\frac{1}{4}+\frac{1}{16}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{16}{64}-\frac{4}{64}+\frac{1}{64}-\frac{1}{256}\right)}{1\left(\frac{64}{64}-\frac{16}{64}+\frac{4}{64}-\frac{1}{64}\right)}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{13}{64}-\frac{1}{256}\right)}{1.\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{52}{256}-\frac{1}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3\left(\frac{51}{256}\right)}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{\frac{153}{256}}{\frac{51}{64}}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{153}{256}:\frac{51}{64}+\frac{5}{8}\)
\(=\frac{1}{2}.\frac{3}{4}+\frac{5}{8}\)
\(=\frac{3}{8}+\frac{5}{8}=1\)
Xin lỗi tớ đã làm hết buổi tối mà chỉ có 7 bài mong bạn thông cảm cho mình nhé !
\(A=\left(\frac{-4}{5}+\frac{4}{3}\right)+\left(\frac{-5}{4}+\frac{14}{5}\right)-\frac{7}{3}\)
\(A=\frac{-4}{5}+\frac{4}{3}+\frac{-5}{4}+\frac{14}{5}-\frac{7}{3}\)
\(A=\left(\frac{-4}{5}+\frac{14}{5}\right)+\left(\frac{4}{3}-\frac{7}{3}\right)+\frac{-5}{4}\)
\(A=2+\left(-1\right)+\frac{-5}{4}\)
\(A=\frac{-1}{4}\)
A=\(\left(\frac{-4}{5}+\frac{4}{3}\right)+\left(\frac{-5}{4}+\frac{14}{5}\right)-\frac{7}{3}\)\(\frac{7}{3}\)
=\(\frac{-4}{5}+\frac{4}{3}+\frac{-5}{4}+\frac{14}{5}+\frac{-7}{3}\)=\(\left(\frac{-4}{5}+\frac{14}{5}\right)+\left(\frac{4}{3}+\frac{-7}{3}\right)+\frac{-5}{4}\)
=\(\frac{10}{5}+\frac{-3}{3}+\frac{-5}{4}\)=\(2-1+\frac{-5}{4}\)=\(1+\frac{-5}{4}\)=\(\frac{4}{4}+\frac{-5}{4}\)=\(\frac{4-5}{4}\)=\(\frac{-1}{4}\)