Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2^5.9^4}{6^6.8^3}=\frac{2^5.3^8}{2^6.3^6.2^9}=\frac{3^2}{2.2^9}=\frac{9}{2^{10}}=\frac{9}{1024}\)
Hok tốt
......................
\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^{15}.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^{15}.3^8}{2^6.3^6.2^9}=\frac{2^{15}.3^8}{2^{15}.3^6}=\frac{3^8}{3^6}=3^2=9\)
a) \(\frac{2^{11}.9^2}{3^5.16^2}=\frac{2^{11}.3^4}{3^5.2^8}=\frac{2^3}{3}=\frac{8}{3}\)
\(\frac{2^7\cdot9^3}{6^5\cdot8^2}\)
\(=\frac{2^7\cdot3^6}{3^5\cdot2^5\cdot2^6}\)
\(=\frac{3}{16}\)
d)\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{3^3\cdot13}{-13}=-27\)
giang làm a,b,c rồi nên làm d thôi
lười quá, hehe ^_^
a) \(\frac{4^2\cdot4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
b)\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}=\frac{243.5}{1}=1215\)
c)\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^5}{2^{11}.3^5}=\frac{1}{2^4}=\frac{1}{16}\)
\(\frac{2^7.3^6}{6^5.8^2}\)= \(\frac{2^7.3^6}{3^5.2^5.2^6}\)=\(\frac{2^7.3^6}{3^5.2^{11}}\)=\(\frac{3}{2^4}\)=\(\frac{3}{16}\)
đó là ý kiến của mình
\(a.\frac{2^7\times9^3}{6^5\times8^2}\)
\(=\frac{3}{16}\)
\(b.\frac{6^3+3\times6^2+3^3}{-13}\)
\(-\frac{333}{13}\)
\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^9.2^6.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^9.2^6.3^8}{2^9.2^6.3^6}=\frac{2^9.2^6.3^6.3^2}{2^9.2^6.3^6}=3^2=9\)