Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{3^3\cdot2^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(8+4+1\right)}{-13}=\frac{3^3\cdot13}{-13}=-27\)
giang làm a,b,c rồi nên làm d thôi
lười quá, hehe ^_^
a) \(\frac{4^2\cdot4^3}{2^{10}}=\frac{\left(2^2\right)^2.\left(2^2\right)^3}{2^{10}}=\frac{2^4.2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
b)\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2.3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5.3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}=\frac{243.5}{1}=1215\)
c)\(\frac{2^7.9^3}{6^5.8^2}=\frac{2^7.\left(3^2\right)^3}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^5}{2^{11}.3^5}=\frac{1}{2^4}=\frac{1}{16}\)
\(\frac{4^2\times4^3}{2^{10}}=\frac{\left(2^2\right)^2\times\left(2^2\right)^3}{2^{10}}=\frac{2^4\times2^6}{2^{10}}=\frac{2^{10}}{2^{10}}=1\)
\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\times3\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5\times3^5}{\left(0,2\right)^6}=\frac{3^5}{0,2}=\frac{243}{0,2}=243:\left(0,2\right)=243\times5=1215\)
\(\frac{2^7\times9^3}{6^5\times8^2}=\frac{2^7\times\left(3^2\right)^3}{\left(2\times3\right)^5\times\left(2^3\right)^2}=\frac{2^7\times3^6}{2^5\times3^5\times2^6}=\frac{3}{2^4}=\frac{3}{16}\)
\(\frac{6^3+3\times6^2+3^3}{-13}=\frac{\left(2\times3\right)^3+3\times6^2+3^3}{-13}=\frac{3\left(2^3\times3^2+6^2+3^2\right)}{-13}=\frac{3\times117}{-13}=\frac{351}{-13}=-27\)
:V Làm sai hết rồi sai ngay từ bước đầu tiên.
\(\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-....-\frac{1}{9.10}\)
\(=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{10}\right)\)
\(=\frac{1}{12}-\frac{3}{20}\)
\(=\frac{-11}{12}\)
\(\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)
= \(-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
= \(-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
= \(-\left(\frac{1}{3}-\frac{1}{10}\right)\)
= \(-\frac{7}{30}\)
a. \(\frac{20^5.5^{10}}{100^5}\)
\(=\frac{20^5.\left(5^2\right)^5}{100^5}\)
\(=\frac{20^5.25^5}{100^5}\)
\(=\frac{500^5}{100^5}\)
\(=\left(\frac{500}{100}\right)^5\)
\(=5^5=3125\)
b. \(\frac{\left(0,9\right)^5}{\left(0,3\right)^6}\)
\(=\frac{\left(0,9\right)^5}{\left(0,3\right)^5.0,3}\)
\(=\left(\frac{0,9}{0,3}\right)^5.\frac{1}{0,3}\)
\(=3^5.\frac{1}{0,3}\)
\(=810\)
c. \(\frac{6^3+3.6^2+3^3}{-13}\)
\(=\frac{\left(3.2\right)^3+3.\left(3.2\right)^2+3^3}{-13}\)
\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}\)
\(=\frac{3^3.13}{-13}\)
\(=\left(-3\right)^3\)
\(=-27\)
a) \(\frac{2^7}{6^5}\times\frac{9^3}{8^8}=\frac{2^7}{2^5\times3^5}\times\frac{3^6}{2^{24}}=\frac{2^7\times3^6}{2^{29}\times3^5}=\frac{3}{4194304}\)
b) \(\frac{6^3+3\times6^2+3^3}{-13}=\frac{2^3\times3^3+3\times2^2\times3^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=\frac{27\times13}{-13}=-27\)
\(\frac{2^7\cdot9^3}{6^5\cdot8^2}\)
\(=\frac{2^7\cdot3^6}{3^5\cdot2^5\cdot2^6}\)
\(=\frac{3}{16}\)
\(\frac{2^{15}.9^4}{6^6.8^3}=\frac{2^9.2^6.\left(3^2\right)^4}{\left(2.3\right)^6.\left(2^3\right)^3}=\frac{2^9.2^6.3^8}{2^9.2^6.3^6}=\frac{2^9.2^6.3^6.3^2}{2^9.2^6.3^6}=3^2=9\)
\(\frac{\left(0,6\right)^5}{\left(0,2\right)^6}=\frac{\left(0,2\right)^5\cdot3^5}{\left(0,2\right)^6}=\frac{3^5}{0.2}=243:\frac{1}{5}=1215\)
\(\frac{2^7\cdot9^3}{6^5\cdot8^2}=\frac{2^7\cdot\left(3^2\right)^3}{2^5\cdot3^5\cdot\left(2^3\right)^2}=\frac{2^7\cdot3^6}{2^{11}\cdot3^5}=\frac{3}{2^4}=\frac{3}{16}\)
câu cuối ko bt
Xin lỗi vì đã ns dối, ko phải tớ ko bt giải mà là tại mama kêu ghê quá nên ko kịp viết lời giải câu cuối !
\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{2^3\cdot3^3+3\cdot2^2\cdot3^2+3^3}{-13}=\frac{2^3\cdot3^3+3^3\cdot2^2+3^3}{-13}=\frac{3^3\left(2^3+2^2+1\right)}{-13}=\frac{27\cdot13}{-13}=-27\)
\(\frac{2^7.3^6}{6^5.8^2}\)= \(\frac{2^7.3^6}{3^5.2^5.2^6}\)=\(\frac{2^7.3^6}{3^5.2^{11}}\)=\(\frac{3}{2^4}\)=\(\frac{3}{16}\)
đó là ý kiến của mình
\(a.\frac{2^7\times9^3}{6^5\times8^2}\)
\(=\frac{3}{16}\)
\(b.\frac{6^3+3\times6^2+3^3}{-13}\)
\(-\frac{333}{13}\)