K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Vì BI và CI là phân giác ABC và ACB 

=> ABI = IBC 

=> ACI = ICB 

=> BIC = 180° - ( IBC + ICB )

Mà ABC + ACB = 180° - A 

=> IBC + ICB = \(\frac{180°-\alpha}{2}\)

=> BIC = 180° - \(\frac{180°-\alpha}{2}\)

13 tháng 10 2016

NHANH GIÚP MÌNH NHA

12 tháng 5 2022

A B C J K H I

a/ Xét tg BIC có

\(\widehat{BIC}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)=180^o-\dfrac{\widehat{B}}{2}-\dfrac{\widehat{C}}{2}=\)

\(=180^o-\left(\dfrac{\widehat{B}+\widehat{C}}{2}\right)=180^o-\left[\dfrac{180^o-\widehat{A}}{2}\right]=90^o+\dfrac{\widehat{A}}{2}\left(dpcm\right)\)

b/ Để c/m câu này ta chứng minh bài toán phụ: " Hai đường phân giác ngoài của 2 góc với đường phân giác trong của góc còn lại đồng quy"

A B C J D E F

Có hai đường phân giác của các góc ngoài của góc B và góc C cắt nhau tại J.

Từ J dựng các đường vuông góc với AB; AC; BC cắt 3 cạnh trên lần lượt tại D; E; F 

Vì J thuộc đường phân giác của \(\widehat{DBC}\) nên JD=JF

Vì J thuộc đường phân giác của \(\widehat{ECB}\) nên JE=JF

(Mọi điểm thuộc đường phân giác của một góc thì cách đều hai cạnh của góc)

=> JD=JE

Xét tg vuông ADJ và tg vuông AEJ có

ẠJ chung; JD=JE (cmt) => tg ADJ = tg AEJ (hai tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)

\(\Rightarrow\widehat{DAJ}=\widehat{EAJ}\) => Ạ là phân giác của góc \(\widehat{BAC}\)

Áp dụng vào bài toán:

Nối AJ => AJ là phân giác của \(\widehat{BAC}\) => AJ phải đi qua I (Trong tg 3 đường phân giác trong đồng quy) => A; I; J thẳng hàng

c/ Vì J; H; K bình đẳng nên B; I; K thẳng hàng và C; I; H thẳng hàng

=> AJ; BK; CH đồng quy tại I