K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

Gọi E, F, P lần lượt là hình chiếu của I trên các đường thẳng AB, BC, CA.

Theo Định lí thuận ta có IE = IF và IF = IP => IE = IP .

Vậy I cách đều hai cạnh AB, AC.

22 tháng 6 2021

Kẻ KG⊥AB(G∈AB),KH⊥BC(H∈BC),KI⊥AC(I∈AC)KG⊥AB(G∈AB),KH⊥BC(H∈BC),KI⊥AC(I∈AC)

Vì KK là điểm nằm trên tia phân giác BKBK của ˆGBCGBC^

⇒K⇒K cách đều 22 cạnh BG,BCBG,BC của ˆGBCGBC^ 

mà KG⊥BGKG⊥BG tại GGKH⊥BCKH⊥BC tại HH(cách dựng hình)

⇒KG=KH⇒KG=KH(tính chất về điểm nằm trên tia phân giác của một góc) (∗)(∗)

Vì KKlà điểm nằm trên tia phân giác CKCK của ˆBCIBCI^

⇒K⇒K cách đều 22 cạnh BC,CIBC,CI của ˆBCIBCI^ 

mà KI⊥CIKI⊥CI tại IIKH⊥BCKH⊥BC tại HH(cách dựng hình)

⇒KI=KH⇒KI=KH(tính chất về điểm nằm trên tia phân giác của một góc) (⋆)(⋆)

Từ (∗)(∗) và (⋆)⇒KG=KI(⋆)⇒KG=KI mà KG⊥ABKG⊥AB tại G, KI⊥ACG, KI⊥AC tại II(cách dựng hình)

⇒K⇒K cách đều 22 cạnh của ˆABCABC^ (tính chất về điểm nằm trên tia phân giác của một góc)

⇒K⇒K thuộc tia phân giác của ˆABC

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm...
Đọc tiếp

1. Cho tam giác ABC, góc A = 120 độ, đường phân giác AD. Đường phân giác góc ngoài tại C cắt đường thẳng AB ở K. Gọi E là giao điểm của DK và AC. Tính số đo của góc BED.

2. Cho tam giác ABC có BC = 17cm, CA = 15cm, AB = 8cm. Ba đường phân giác của tam giác cắt nhau tại O. Tính tổng các khoảng cách từ O đến ba cạnh của tam giác.

3. Cho tam giác ABC vuông cân tại A, M là trung điểm của BC. Gọi D là điểm thuộc đoạn MC, H là hình chiếu của B trên AD. Chứng minh HM là tia phân giác của góc BHD.

4. Cho tam giác ABC và điểm I là giao điểm 3 đường phân giác của tam giác. Gọi H là chân đường vuông góc kẻ từ B đến AI. Chứng minh rằng góc IBH = góc ICA.

5. Cho tam giác ABC có góc B = 50 độ, góc C = 20 độ, đường cao AH. Tia phân giác của góc AHC cắt AC tại D. Vẽ tia Ax là tia đối của tia AB. Chứng minh điểm D nằm trên tia phân giác của góc ABC.

0
13 tháng 10 2018

8 tháng 6 2016

A B C D E F I

a, 

ta có 

A + B+ C = \(180^0\)

B + C  = \(180^0\)-  A

mà BI là phân giác góc B

IBC = \(\frac{1}{2}\)B

CI là phân giác góc C 

ICB = \(\frac{1}{2}\)C

suy ra 

IBC + ICB = \(\frac{1}{2}\)B + \(\frac{1}{2}\)C = \(\frac{1}{2}\)( B + C ) = \(\frac{1}{2}\)\(180^0\)- A ) = \(\frac{1}{2}\) \(\left(180^0-60^0\right)\)\(60^0\)

mà IBC + ICB + BIC = \(180^0\)

suy ra BIC = \(180^0\)- ( IBC + ICB )

          BIC = \(180^0\)\(60^0\) 

          BIC = \(120^0\)

b,

ta có vì I là giao điểm của phân giác góc B và C 

suy ra phân giác góc A đi qua I suy ra tia AI trùng tia IF suy ra AF là phần giác góc A mà I cách đều AB ; AC ; BC 

nên IE = ID = IF

c,

ta có EIB + BIC =\(180^0\) 

       EIB = \(180^0-120^0\)

     EIB = \(60^0\)

    Mà EIB đối đỉnh góc DIC 

suy ra DIC = EIB =  \(60^0\)

vì IF là tia phân giác góc BIC 

nên BIF = CIF = \(\frac{1}{2}\)\(120^0\)\(60^0\)

EIF = BIE + BIF = \(60^0+60^0=120^0\)

DIF = DIC + CIF =  \(60^0+60^0=120^0\)

xét tam giác EIF và DIF có 

EIF = DIF = \(120^0\)

IF là cạnh chung 

IE = ID 

suy ra tam giác EIF = tam giác DIF ( c-g-c )

suy ra EF = DF 

ta có góc BIC đối đỉnh góc EID 

nên BIC = EID = \(120^0\)

xét tam giác EIF và EID có 

EID = EIF =\(120^0\)

ID = IF 

IE cạnh chung 

suy ra tam giác DIE = tam giác FIE ( c-g-c )

suy ra ED = EF 

mà EF = DF 

suy ra ED = EF = DF

suy ra tam giác EDF là tam giác đều 

d,

ta có IE = IF = ID 

nên I cách đều 3 đỉnh tam giác DFE nên I là giao điểm của 3 đường trung trực tam giác DEF 

mà trong tam giác đều 3 đường trung trực đồng thời là 3 đường phân giác của tam giác đó 

suy ra I là giao điểm của hai đường phân giác trong tam giác ABC vá DEF

3 tháng 4 2020

Hình tự vẽ nha!
Xét tam giác ABC có : \(\widehat{A}\)\(=180\)\(-(\widehat{B}\)\(+\widehat{C}\)\()\)
Xét tam giác BOC có : \(\widehat{OBC}\)\(+\widehat{OCB}\)\(=180-\widehat{BOC}\)\(\Rightarrow\widehat{OBC}\)\(+\widehat{OCB}\)=\(180-130\)\(\Rightarrow\widehat{OBC}\)\(+\widehat{OCB}\)\(=50\)
Vì OC là tia phân giác của \(\widehat{C}\)\(\Rightarrow\widehat{OCB}\)\(=\widehat{OCA}\)\(=\frac{1}{2}\)\(\widehat{C}\)
Vì OB là tia phân giác của \(\widehat{B}\)\(\Rightarrow\widehat{OBC}\)\(=\widehat{OBA}\)\(=\frac{1}{2}\)\(\widehat{B}\)
\(\Rightarrow\frac{1}{2}\)\((\widehat{B}\)\(+\widehat{C}\)\()\)\(=\widehat{OBC}\)\(+\widehat{OCB}\)\(=50\)\(\Rightarrow\widehat{B}\)\(+\widehat{C}\)\(=50.2=100\)\(\Rightarrow\widehat{A}\)\(=180-100\)\(=80\)
Mình không viết độ được mong bạn thông cảm!
Chúc bạn học tốt!