Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lỗi nha bạn. Cái này bạn lên google tra. Có phải vô phần nghe là bị trục trặc hả?
mình cũng cần người giúp mình khắc phục lỗi error 521 nữa]
a)
\(\sqrt{9+4\sqrt{5}}\cdot\sqrt{6-2\sqrt{5}}\\ =\sqrt{4+4\sqrt{5}+5}\cdot\sqrt{1-2\sqrt{5}+5}\\ =\sqrt{\left(2+\sqrt{5}\right)^2}\cdot\sqrt{\left(1-\sqrt{5}\right)^2}\\ =\left(2+\sqrt{5}\right)\left(1-\sqrt{5}\right)\)
b)
\(\sqrt{3+2\sqrt{2}}-\sqrt{6-4\sqrt{2}}\\ =\sqrt{2+2\sqrt{2}+1}-\sqrt{4-4\sqrt{2}+2}\\ =\sqrt{\left(\sqrt{2}+1\right)^2}-\sqrt{\left(2-\sqrt{2}\right)^2}\\ =\sqrt{2}+1-2+\sqrt{2}=2\sqrt{2}-1\)
Bài 17:
a) Xét tứ giác BDHF có
\(\widehat{BFH}\) và \(\widehat{BDH}\) là hai góc đối
\(\widehat{BFH}+\widehat{BDH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: BDHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Bài 17:
b) Xét ΔABC có
AD là đường cao ứng với cạnh BC(gt)
CF là đường cao ứng với cạnh AB(gt)
AD cắt CF tại H(gt)
Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)
Suy ra: BH\(\perp\)AC
hay BE\(\perp\)AC
Xét ΔFHB vuông tại F và ΔEHC vuông tại E có
\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔFHB\(\sim\)ΔEHC(g-g)
Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(HB\cdot HE=HC\cdot HF\)(đpcm)
\(a=\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\)
=>\(a^3=2-\sqrt{3}+2+\sqrt{3}+3\cdot\left(\sqrt[3]{2-\sqrt{3}}+\sqrt[3]{2+\sqrt{3}}\right)\cdot\sqrt[3]{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)
=>\(a^3=4+3a\)
=>\(a^3-3a=4\)
\(\Leftrightarrow a^2-3=\dfrac{4}{a}\)
\(\left(a^2-3\right)^3\)
\(=\left(\dfrac{4}{a}\right)^3=\dfrac{64}{a^3}\)
\(C=\dfrac{64}{\left(a^2-3\right)^3}-3a\)
\(=64:\dfrac{64}{a^3}-3a\)
=a^3-3a
=4
\(\dfrac{11}{2-\sqrt{3}}+\sqrt{7+4\sqrt{3}}-24\\ =\dfrac{11\left(2+\sqrt{3}\right)}{4-3}+\sqrt{4+4\sqrt{3}+3}-24\\ =\dfrac{22+11\sqrt{3}}{1}+\sqrt{2^2+2\cdot2\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}-24\\ =22+11\sqrt{3}+\sqrt{\left(2+\sqrt{3}\right)^2}-24\\ =22+11\sqrt{3}+2+\sqrt{3}-24\\ =12\sqrt{3}\)