Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B= (1-1/2). ( 1-1/3).(1-1/4).(1-1/5)....(1-1/2004)
B= 1/2. 2/3 . 3/4. 4/5....2003/2004
B= 1/2004
\(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(B=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(B=\frac{1}{2004}\)
\(F=1\dfrac{1}{5}\times1\dfrac{1}{6}\times1\dfrac{1}{7}\times\cdot\cdot\cdot\times1\dfrac{1}{2019}\times1\dfrac{1}{2020}\)
\(F=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times\cdot\cdot\cdot\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)
\(F=\dfrac{6\times7\times8\times\cdot\cdot\cdot\times2020\times2021}{5\times6\times7\times\cdot\cdot\cdot\times2019\times2020}\)
\(F=\dfrac{2021}{5}\)
\(Huyền\) |
\(f=1^1_5\times1^1_6\times1^1_7\times......\times1^1_{2019}\times1^1_{2022}\)
\(f=\dfrac{6}{5}\times\dfrac{7}{6}\times\dfrac{8}{7}\times....\times\dfrac{2020}{2019}\times\dfrac{2021}{2020}\)
\(f=\dfrac{6\times7\times8\times....\times2020\times2021}{5\times6\times7\times.....\times2019\times2020}\)
\(f=\dfrac{2021}{5}\)
\(#Tarus\)
\(B=\frac{1}{2}x\frac{2}{3}x\frac{3}{4}x\frac{4}{5}x...x\frac{2002}{2003}x\frac{2003}{2004}\)
\(B=\frac{1x2x3x4x...x2002x2003}{2x3x4x5x...x2003x2004}\)
Rút gọn các thừa số ở tử và mẫu ta được:
\(B=\frac{1}{2004}\)
Đ/S:\(\frac{1}{2004}\)
Ta có:
\(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right)....\left(1-\frac{1}{2003}\right).\left(1-\frac{1}{2004}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{2002}{2003}.\frac{2003}{2004}\)
\(=\frac{1.2....2002.2003}{2.3....2003.2004}\)
Đơn giản hết sẽ là:
\(=\frac{1}{2004}\)
Bạn tham khảo theo đường link này nhé có 1 bài tương tự đó : https://olm.vn/hoi-dap/question/1042256.html
1) a) \(\frac{5454}{5757}-\frac{171717}{191919}=\frac{18\times3\times101}{19\times3\times101}-\frac{17\times10101}{19\times10101}=\frac{18}{19}-\frac{17}{19}=\frac{1}{19}\)
b) \(\frac{6}{5}\times\frac{7}{6}\times\frac{8}{7}\times....\times\frac{2021}{2020}=\frac{6\times7\times8\times...\times2021}{5\times6\times7\times...\times2020}=\frac{2021}{5}\)
2) \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}=2\times\frac{1}{6}+2\times\frac{1}{12}+2\times\frac{1}{20}+...+2\times\frac{1}{90}\)
\(=2\times\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=2\times\left(\frac{1}{2\times3}+\frac{1}{3\times4}+\frac{1}{4\times5}+...+\frac{1}{9\times10}\right)\)
\(=2\times\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)=2\times\left(\frac{1}{2}-\frac{1}{10}\right)=2\times\frac{2}{5}=\frac{4}{5}\)
b)Vì \(a-1< a+1\)
=> \(\frac{1}{a-1}>\frac{1}{a+1}\)
\(B=\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)\left(1-\frac{1}{5}\right)\cdot....\cdot\left(1-\frac{1}{2003}\right)\left(1-\frac{1}{2004}\right)\)
\(=\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}\cdot....\cdot\frac{2002}{2003}\cdot\frac{2003}{2004}\)
\(=\frac{2\cdot3\cdot4\cdot...\cdot2002\cdot2003}{3\cdot4\cdot5\cdot...\cdot2003\cdot2004}=\frac{1}{1002}\)
Câu 1:
0,9 x 218 x 2 + 0,18 x 4290 + 0,6 x 353 x 3
= 9/10 x 436 + 9/50 x 4290 + 6/10 x 1059
= 9 x 43,6 + 9 x 85,8 + 6 x 105,9
= 3 x 130,8 + 3 x 257,4 + 3 x 211,8
= 3 x ( 130,8 + 257,4 + 211,8 )
= 3 x 600
= 1800
Câu 2:
3/4 x X + 1/2 x X - 15 = 35
X x ( 3/4 + 1/2 ) - 15 = 35
X x ( 3/4 + 1/2 ) = 50
X x 5/4 = 50
X = 40
VẬy X = 40
A=1/2x2/3x3/4x...x2018/2019x2019/2020=1/2020
A = 1/2 x 2/3 x 3/4 x ... x 2018/2019 x 2019/2020 = 1/2020