K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2018

(1/2)^m = 1/32

mà 1/32 = (1/2)^5 nên m = 5

343/125= (7/5)^n

mà 343/125 = (7/5)^3 nên n=3

27 tháng 7 2023

Bài 6 :

a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)

b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)

c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)

d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)

27 tháng 7 2023

Bài 7 :

a) \(3^x+3^{x+2}=9^{17}+27^{12}\)

\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)

\(\Rightarrow10.3^x=3^{34}+3^{36}\)

\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)

\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)

b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)

\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)

\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)

c) Bài C bạn xem lại đề

d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)

\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)

\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)

\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)

\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)

\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)

24 tháng 10 2021

45^10*5^20/75^15

=5^10*9^10*5^20/(5^2)^15

=5^10*5^20*9^10/5^30

=9^10

(0.8)^5/(0.4)^6

=(0.4)^5*2^5/(0.4)^6

=2^5/(0.4)

=32/(0.4)

=80

2^15*9^4/6^6*8^3

=2^15*(3^2)^4/2^6*3^6*(2^3)^3

=2^15*3^8/2^6*3^6*2^9

=3^2

=9

13 tháng 8 2019

3.

a) \(\left(x-1\right)^3=125\)

=> \(\left(x-1\right)^3=5^3\)

=> \(x-1=5\)

=> \(x=5+1\)

=> \(x=6\)

Vậy \(x=6.\)

b) \(2^{x+2}-2^x=96\)

=> \(2^x.\left(2^2-1\right)=96\)

=> \(2^x.3=96\)

=> \(2^x=96:3\)

=> \(2^x=32\)

=> \(2^x=2^5\)

=> \(x=5\)

Vậy \(x=5.\)

c) \(\left(2x+1\right)^3=343\)

=> \(\left(2x+1\right)^3=7^3\)

=> \(2x+1=7\)

=> \(2x=7-1\)

=> \(2x=6\)

=> \(x=6:2\)

=> \(x=3\)

Vậy \(x=3.\)

Chúc bạn học tốt!

13 tháng 8 2019

Giúp mk với nha các bạn

29 tháng 6 2018

a) Ta có: \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

Mà \(\frac{1}{32}=\left(\frac{1}{2}\right)^5\)

\(\Rightarrow\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\Rightarrow m=5\)

b)Ta có:  \(\frac{343}{125}=\left(\frac{7}{5}\right)^3\)

Mà \(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\Rightarrow n=3\)

29 tháng 6 2018

\(a)\) \(\left(\frac{1}{2}\right)^m=\frac{1}{32}\)

\(\Leftrightarrow\)\(\left(\frac{1}{2}\right)^m=\frac{1^5}{2^5}\)

\(\Leftrightarrow\)\(\left(\frac{1}{2}\right)^m=\left(\frac{1}{2}\right)^5\)

\(\Leftrightarrow\)\(m=5\)

Vậy \(m=5\)

\(b)\) \(\frac{343}{125}=\left(\frac{7}{5}\right)^n\)

\(\Leftrightarrow\)\(\frac{7^3}{5^3}=\left(\frac{7}{5}\right)^n\)

\(\Leftrightarrow\)\(\left(\frac{7}{5}\right)^3=\left(\frac{7}{5}\right)^n\)

\(\Leftrightarrow\)\(n=3\)

Vậy \(n=3\)

Chúc bạn học tốt ~ 

1: 

a: f(3)=2*3^2-3*3=18-9=9

b: f(x)=0

=>2x^2-3x=0

=>x=0 hoặc x=3/2

c: f(x)+g(x)

=2x^2-3x+4x^3-7x+6

=6x^3-10x+6

18 tháng 4 2020

\(A=\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\)

\(2A=1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\)

\(2A-A=\)\(\left(1-\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^3+...-\left(\frac{1}{2}\right)^{19}\right)-\)\(\left(\frac{1}{2}-\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3-\left(\frac{1}{2}\right)^4+...-\left(\frac{1}{2}\right)^{20}\right)\)

\(A=1-\left(\frac{1}{2}\right)^{20}\)