Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\left(1\right)\)
Vì \(\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2024}\ge0\forall x\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\left(2\right)\)
Từ (1) và (2)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)
\(\Rightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(M=21.2^2.\dfrac{1}{2}+4.2.\left(\dfrac{1}{2}\right)^2=21.2+4.2.\dfrac{1}{4}=42+2=44\)
Ta có: \(\left(x-2\right)^4\ge0\forall x\)
\(\left(2y-1\right)^{2024}\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2024}\ge0\forall x;y\)
Mặt khác: \(\left(x-2\right)^4+\left(2y-1\right)^{2024}\le0\)
nên \(\left(x-2\right)^4+\left(2y-1\right)^{2024}=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)^4=0\\\left(2y-1\right)^{2024}=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Thay \(x=2\) và \(y=\dfrac{1}{2}\) vào \(M\), ta được:
\(M=21\cdot2^2\cdot\dfrac{1}{2}+4\cdot2\cdot\left(\dfrac{1}{2}\right)^2\)
\(=42+2\)
\(=44\)
Vậy \(M=44\) tại \(x=2;y=\dfrac{1}{2}\).
#\(Toru\)
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
Bạn nên gõ đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn.
(x + 20)⁴ + (2y - 1)²⁰²⁴ ≤ 0
⇒ (x + 20)⁴ = 0 và (2y - 1)²⁰²⁴ = 0
*) (x + 20)⁴ = 0
x + 20 = 0
x = 0 - 20
x = -20
*) (2y - 1)²⁰²⁴ = 0
2y - 1 = 0
2y = 1
y = 1/2
M = 5.(-20)².1/2 - 4.(-2).(1/2)²
= 1000 + 2
= 1002
Ta có: (x - 2)4 \(\ge\)0 \(\forall\)x
(2y - 1)2020 \(\ge\) 0 \(\forall\)y
=> (x - 2)4 + (2y - 1)2020 \(\ge\)0 \(\forall\)x,y
Mà ĐK : (x - 2)4 + (2y - 1)2020 \(\le\)0
=> (x - 2)4 + (2y - 1)2020 = 0
=> \(\hept{\begin{cases}\left(x-2\right)^4=0\\\left(2y-1\right)^{2020}=0\end{cases}}\)
=> \(\hept{\begin{cases}x-2=0\\2y-1=0\end{cases}}\)
=> \(\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}\)
Với x = 2, y = 1/2 thay vào biểu thức P, ta có:
P = \(21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\) = \(42+2=44\)
Vậy giá trị của P = 44