K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn vô link này tham khảo thêm nha:

Câu hỏi của Lovely Sweetheart Princess - Toán lớp 7 - Học toán với OnlineMath

15 tháng 4 2017

Vì \(\left(x-2\right)^4\ge0\forall x\)dấu "=" xảy ra \(\Leftrightarrow\)x-2=0 \(\Leftrightarrow\)x=2

\(\left(2y-1\right)^{2014}\ge0\forall y\)Dấu "=" xảy ra \(\Leftrightarrow\)2y - 1=0 \(\Leftrightarrow y=\frac{1}{2}\)

\(\Rightarrow\left(x-2\right)^4+\left(2y-1\right)^{2014}\ge0\)

Kết hợp với điều kiện đề bài \(\left(x-1\right)^4+\left(2y-1\right)^{2014}\le0\), ta được:

\(\left(x-2\right)^4+\left(2y-1\right)^{2014}=0\)

Vậy x = 2; \(y=\frac{1}{2}\)

Thay x=2; \(y=\frac{1}{2}\)vào M, ta có:

\(M=21.2^2.\frac{1}{2}+4.2.\left(\frac{1}{2}\right)^2\)

\(=21.4.\frac{1}{2}+4.2.\frac{1}{4}\)

\(=42+2=44\)

Vậy M=44

6 tháng 7 2019

\(C=x^3+x^2y-xy^3-y^4+x^2-y^3+3=\left(x^3+x^2y+x^2\right)-\left(xy^3+y^4+y^3\right)+3=x^2\left(x+y+1\right)-y^3\left(x+y+1\right)+3=x^2.0+y^3.0+3=0+0+3=3\)

\(Taco:\left\{{}\begin{matrix}\left(x-2\right)^4\ge0\forall x\\\left(2y-1\right)^{2014}\ge0\forall y\end{matrix}\right.mà:\left(x-2\right)^4+\left(2y-1\right)^{2014}\le0\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^4=0\\\left(2y-1\right)^{2014}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\frac{1}{2}\end{matrix}\right.\Rightarrow D=21x^2y+4xy^2=xy\left(21x+4y\right)=\frac{2}{2}\left(42+2\right)=44\)

\(Bài4\)

\(xy+3x-y=6\Leftrightarrow xy+3x-y-3=3\Leftrightarrow x\left(y+3\right)-\left(y+3\right)=3\Leftrightarrow\left(x-1\right)\left(y+3\right)=3;x\in Z\Rightarrow x-1\in Z\Rightarrow x-1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(+,x-1=-1\Rightarrow\left\{{}\begin{matrix}x=0\\y+3=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-6\end{matrix}\right.\left(thoaman\right)\)

\(+,x-1=-3\Rightarrow\left\{{}\begin{matrix}x=-2\\y+3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-4\end{matrix}\right.\left(thoaman\right)\)

\(+,x-1=3\Rightarrow\left\{{}\begin{matrix}x=4\\y+3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-2\end{matrix}\right.\left(thoaman\right)\)

\(+,x-1=1\Rightarrow\left\{{}\begin{matrix}x=2\\y+3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=0\end{matrix}\right.\left(thoaman\right)\)

\(Vậy:\left(x,y\right)\in\left\{\left(2;0\right);\left(4;-2\right);\left(-2;-4\right);\left(0;-6\right)\right\}\)

10 tháng 2 2020

 (x-1)200+(y+2)300=0 

(x-1)^200 > 0 ; (y+2)^300>0

=> (x-1)^200 = 0 và (y + 2)^300 = 0

=> x - 1 = 0 và y + 2 = 0

=> x = 1 và y = - 2

thay vào rồi tính như bình thường thôi

10 tháng 2 2020

Vì \(\left(x-1\right)^{200}\ge0\forall x\)\(\left(y+2\right)^{300}\ge0\forall y\)

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}\ge0\)

mà \(\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)( giả thiết )

\(\Rightarrow\left(x-1\right)^{200}+\left(y+2\right)^{300}=0\)\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

Thay \(x=1\)và \(y=-2\)vào biểu thức ta được:

\(P=2.1^{100}-5.\left(-2\right)^3+4=2-5.\left(-8\right)+4=2+5.8+4\)

\(=2+40+4=46\)

16 tháng 10 2019

ta có x2+2y+1+y2+2z+1+z2+2x+1=0

=>(x2+2x+1)+(y2+2y+1)+(z2+2z+1)=0

=>(x+1)2+(y+1)2+(z+1)2=0

Vì (x+1)2> hoặc = 0

.......

=> x=-1,y=-1,z=-1

sau đó thay vào nha