Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(\left(x-\frac{1}{5}\right)^2\ge0\).Dấu "=" xảy ra khi \(x=\frac{1}{5}\)
\(\Rightarrow A=\left(x-\frac{1}{5}\right)^2+\frac{11}{15}\ge\frac{11}{15}\)
Nên GTNN của A là \(\frac{11}{15}\) xảy ra khi \(x=\frac{1}{5}\)
a) A = \(9\frac{3}{8}-\left(2\frac{3}{5}+2\frac{3}{8}\right)=9\frac{3}{8}-2\frac{3}{5}-2\frac{3}{8}=\left(9\frac{3}{8}-2\frac{3}{8}\right)-2\frac{3}{5}=7-\frac{13}{5}=\frac{22}{5}\)
b) B = \(\left(15\frac{3}{5}+5\frac{3}{4}\right)-8\frac{3}{5}=15\frac{3}{5}+5\frac{3}{4}-8\frac{3}{5}=\left(15\frac{3}{5}-8\frac{3}{5}\right)+5\frac{3}{4}=7+\frac{23}{4}=\frac{51}{4}\)
c) C = \(17\frac{1}{4}-\left(2\frac{3}{7}+7\frac{1}{4}\right)=17\frac{1}{4}-2\frac{3}{7}-7\frac{1}{4}=\left(17\frac{1}{4}-7\frac{1}{4}\right)-2\frac{3}{7}=10-\frac{17}{7}=\frac{53}{7}\)
d) D = \(\left(11\frac{5}{17}+3\frac{5}{7}\right)-4\frac{5}{17}=11\frac{5}{17}+3\frac{5}{7}-4\frac{5}{17}=\left(11\frac{5}{17}-4\frac{5}{17}\right)+3\frac{5}{7}=7+\frac{26}{7}=\frac{75}{7}\)
a/\(\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
= \(\frac{2^{10}.3^8-2.2^9.3^9}{2^{10}.3^8+2^8.3^8.2^2.5}=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8\left(1+5\right)}=\frac{1-3}{1+5}=\frac{-2}{6}=-3\)
Để giá trị của biểu thức trên nhỏ nhất thì ( x2 + 5)2 phải nhỏ nhất.
Mà để ( x2 + 5)2 nhỏ nhất thì x2 + 5 nhỏ nhất
x2 + 5 >= 5
x2 >= 0
Dấu "=" xảy ra khi x = 0. Vậy giá trị nhỏ nhất của biểu thức bằng : ( 0 +5)2 + 4 = 29 với x =0
cách 1:\(\frac{2^5.9^2}{6^4.8}=\frac{32.81}{1296.8}=\frac{1}{4}\)
cách 2 tách 2^5 và 9^2 mẫu tương tự
cách 1:\(\frac{2^5.9^2}{6^4.8}=\frac{32.81}{1296.8}=\frac{1}{4}\)
cách 2 tách 2^5 và 9^2 mẫu tương tự