Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề:
\(A=\dfrac{4}{2.5}+\dfrac{4}{5.8}+\dfrac{4}{8.11}+...+\dfrac{4}{65.68}\)
\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{65}-\dfrac{1}{68}\right)\)
\(A=4.\left(\dfrac{1}{2}-\dfrac{1}{68}\right)\)
\(A=4.\left(\dfrac{34}{68}-\dfrac{1}{68}\right)\)
\(A=4.\dfrac{33}{68}\)
\(A=\dfrac{33}{17}\)
A = \(\dfrac{4}{2.5}\) + \(\dfrac{4}{5.8}\)+ \(\dfrac{4}{8.11}\)+...+ \(\dfrac{4}{65.68}\)
A = \(\dfrac{4}{3}\).( \(\dfrac{3}{2.5}\) + \(\dfrac{3}{5.8}\)+ \(\dfrac{3}{8.11}\)+....+ \(\dfrac{3}{65.68}\))
A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{5}\) + \(\dfrac{1}{5}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{8}\) - \(\dfrac{1}{11}\)+...+ \(\dfrac{1}{65}\)- \(\dfrac{1}{68}\)
A = \(\dfrac{4}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{68}\))
A = \(\dfrac{4}{3}\). \(\dfrac{33}{68}\)
A = \(\dfrac{11}{17}\)
\(A=\dfrac{4}{1\cdot5}+\dfrac{4}{5\cdot9}+...+\dfrac{4}{2001\cdot2005}\)
\(A=1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-...+\dfrac{1}{2001}-\dfrac{1}{2005}\)
\(A=1-\dfrac{1}{2005}=\dfrac{2004}{2005}\)
\(B=\dfrac{3}{10\cdot12}+\dfrac{3}{12\cdot14}+...+\dfrac{3}{998\cdot1000}\)
\(\dfrac{2}{3}B=\dfrac{2}{10\cdot12}+...+\dfrac{2}{998\cdot1000}\)
\(\dfrac{2}{3}B=\dfrac{1}{10}-\dfrac{1}{12}+\dfrac{1}{12}-...+\dfrac{1}{998}-\dfrac{1}{1000}\)
\(\dfrac{2}{3}B=\dfrac{1}{10}-\dfrac{1}{1000}=\dfrac{99}{1000}\)
\(B=\dfrac{99}{1000}:\dfrac{2}{3}=\dfrac{297}{2000}\)
\(A=\dfrac{4}{1.5}+\dfrac{4}{5.9}+...+\dfrac{4}{2001.2005}\)
\(\Rightarrow A=4\left(\dfrac{1}{1.5}+\dfrac{1}{5.9}+...+\dfrac{1}{2001.2005}\right)\)
\(\Rightarrow A=4.\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+...+\dfrac{1}{2001}-\dfrac{1}{2005}\right)\)
\(\Rightarrow A=1-\dfrac{1}{2005}\)
\(\Rightarrow A=\dfrac{2004}{2005}\)
\(\dfrac{3}{2}A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{94.97}\)
\(\dfrac{3}{2}A=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{97-94}{94.97}\)
\(\dfrac{3}{2}A=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{97}{94.97}-\dfrac{94}{94.97}\)
\(\dfrac{3}{2}A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{94}-\dfrac{1}{97}\)
\(\dfrac{3}{2}A=1-\dfrac{1}{97}=\dfrac{96}{97}\)
⇒ A = \(\dfrac{96}{97}:\dfrac{3}{2}=\dfrac{64}{97}\)
Câu B cách làm tương tự, thắc mắc gì bạn cứ hỏi nhé.
Lời giải:
Hiệu đáy lớn và đáy bé là:
$141\times 2: 23=\frac{282}{23}$ (m)
Đáy bé hình thang:
$\frac{282}{23}: (5-3).3=\frac{423}{23}$ (m)
Đáy lớn hình thang:
$\frac{282}{23}: (5-3).5=\frac{705}{23}$ (m)
Diện tích hình thang lúc đầu:
$(\frac{423}{23}+\frac{705}{23}).23:2=564$ (m2)
1.
\(B=20182018.2017-20172017.2018\)
\(B=2018.10001.2017-2017.10001.2018\)
\(B=0\)
1 B=20182018.2017-20172017.2018
B=2018.10001.2017-2017.10001.2018
B=0
2 C=12+22+32+...+1002
C=1(1+0)+2(1+1)+3(1+2)+...+100(1+99)
C=1+2+1.2+3+2.3+...+100+99.100
C=(1+2+3+...+100)+(1.2+2.3+...+99.100)
C=[(1+100).100:2]+[(99.100.101):3]
C=5050+333300
C=338350
\(\begin{array}{l}\left( {\frac{{20}}{7}.\frac{{ - 4}}{{ - 5}}} \right) + \left( {\frac{{20}}{7}.\frac{3}{{ - 5}}} \right) = \frac{{20}}{7}.\left( {\frac{{ - 4}}{{ - 5}} + \frac{3}{{ - 5}}} \right)\\ = \frac{{20}}{7}.\left( {\frac{{ - 1}}{{ - 5}}} \right) = \frac{{20}}{7}.\frac{1}{5} = \frac{{20}}{{35}} = \frac{4}{7}\end{array}\)
-3/11.(-22)/66.121/15
=(-3).(-22).121
11.66.15
=11
15
3/7.2/5.7/3.20.19/72
=3.2.7.20.19
7.5.3.72
=76
16
6/7.8/13+6/13.9/7-3/13.6/7
=6/7.8/13+6/7.9/13-3/13.6/7
=6/7.(8/13+9/13-3/13)
=6/7.14/13
=12/13
-1/4.152/11+68/4.(-1)/11
=152/4.(-1)/11+68/4.(-1)/11
=(-1)/11.(152/4+68/4)
=(-1)/11.220/4
=-110/22
-5/7.2/11+(-5)/7.9/11+12/7
=-5/7.2/11+-5/7.9/11+12/7
=-5/7.(2/11+9/11)+12/7
=-5/7.1+12/7
=(-5)/7+12/7
=7/7
=1
146/13-(18/7+68/13)
=146/13-18/7-68/13
=(146/13-68/13)-18/7
=78/13-18/7
=6-18/7
=42/7-18/7
=24/7
\(25-\left(44-756+12\right)+\left(44-756+12\right)\)
\(=25-44+756-12+44-756+12\)
\(=25+\left(44-44\right)+\left(756-756\right)+\left(12-12\right)\)
=25
Sửa đề:
\(A=\dfrac{3}{5}+\dfrac{3}{20}+\dfrac{3}{44}+\dfrac{3}{77}\)
\(A=2.\left(\dfrac{3}{5}+\dfrac{3}{20}+\dfrac{3}{44}+\dfrac{3}{77}\right)\)
\(A=\dfrac{6}{10}+\dfrac{6}{40}+\dfrac{6}{88}+\dfrac{6}{154}\)
\(A=6.\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+\dfrac{1}{11.14}\right)\)
\(A=6.\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{14}\right)\)
\(A=6.\left(\dfrac{1}{2}-\dfrac{1}{14}\right)\)
\(A=6.\dfrac{6}{14}\)
\(A=\dfrac{36}{14}=\dfrac{18}{7}\)
\(=\dfrac{1}{5}.3+\dfrac{1}{5}.\dfrac{3}{4}+\dfrac{1}{11}.\dfrac{3}{4}+\dfrac{1}{11}.\dfrac{3}{7}\)
\(=\dfrac{1}{5}.\left(3+\dfrac{3}{4}\right)+\dfrac{1}{11}.\left(\dfrac{3}{4}+\dfrac{3}{7}\right)\)
\(=\dfrac{1}{5}.\dfrac{15}{4}+\dfrac{1}{11}.\dfrac{33}{28}=\dfrac{3}{4}+\dfrac{3}{28}=\dfrac{6}{7}\)