K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2019

Chọn B.

Ta có: A= ( sin230 + sin2870) + ( sin2750 + sin2150)

A= (sin230 + cos230)  + ( sin2150 + cos2150)

= 1 + 1 = 2

4 tháng 1 2019

Chọn C.

Hai góc 150 và 750  phụ nhau nên sin750 = cos150

Hai góc 200 và 1100 hơn kém nhau 900 nên cos1100 = -sin200

Do đó, A = sin2150 + cos2200 + sin2750 + cos21100

= sin2150 + cos2200 + cos2150 + (-sin200)2 = 2

3 tháng 4 2023

A = (1- 2) \(\times\) ( 4 - 3) \(\times\) (5 - 6) \(\times\) (8 - 7) \(\times\) (9 - 10) \(\times\) (12 - 11) \(\times\)(13 - 14)

A = (-1) \(\times\) 1 \(\times\) (-1)  \(\times\) 1 \(\times\) (-1) \(\times\) 1 \(\times\) (-1)

A = 1

9 tháng 8 2019

Ta có tanα + cotα = tanα + 1/tanα.

Do đó tanα + cotα ≤ -2 hoặc tanα + cotα ≥ 2.

Dấu “=” xảy ra khi tanα = cotα = -1 hoặc tanα = cotα = 1.

Với giả thiết tanα + cotα = -2 thì tanα = cotα = -1.

Do đó  N   =   tan 3 α   +   c o t 3 α  = -2

Đáp án là C.

NV
17 tháng 1 2022

\(a^3+b^3+c^3-3abc=1\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)

Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)

(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)

\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)

\(\Rightarrow a^2+b^2+c^2\ge1\)

19 tháng 1 2022

Bạn có thể giải thích phần (1) <=> với cái đó được ko. Mình vẫn chưa hiểu mấy bước sau lắm

13 tháng 11 2019

Chọn B.

Ta có: góc A tù nên  cos A < 0 ; sinA > 0 ; tan A < 0 ; cot A < 0

Do góc A tù nên góc B và C là các góc nhọn có các giá trị lượng giác đều dương

Do đó: M > 0 ; N > 0 ; P > 0 và Q < 0.

25 tháng 6 2018

Suy luận.

Tử số của P lớn hơn hoặc bằng 2, còn mẫu số là sin 2   a .   cos 2   a = 2/3. 1/3 = 2/9 < 1/4, nên P ≤ 8. Do đó các phương án A, B, D bị loại. Đáp án là C.