Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=|3x-6|+|3x-1|=|6-3x|+|3x-1|\(\ge\)6-3x+3x-1=5
Dấu bằng xảy ra khi \(\left\{{}\begin{matrix}6-3x\ge0\\3x-1\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\x\ge\frac{1}{3}\end{matrix}\right.\Leftrightarrow\frac{1}{3}\le x\le2\)
=> b=1/3, a=2
S=5
Vậy S=5
\(P=\left|3x-6\right|+\left|3x+1\right|=\left|6-3x\right|+\left|3x+1\right|\ge\left|6-3x+3x+1\right|=7\)
Dấu "=" xảy ra khi \(-\frac{1}{3}\le x\le2\Rightarrow\left\{{}\begin{matrix}b=-\frac{1}{3}\\a=2\end{matrix}\right.\)
\(\Rightarrow S=3\)
Ta có \(\sqrt{8a^2+56}=\sqrt{8\left(a^2+7\right)}=2\sqrt{2\left(a^2+ab+2bc+2ca\right)}\)
\(=2\sqrt{2\left(a+b\right)\left(a+2c\right)}\le2\left(a+b\right)+\left(a+2c\right)=3a+2b+2c\)
Tương tự \(\sqrt{8b^2+56}\le2a+3b+2c;\)\(\sqrt{4c^2+7}=\sqrt{\left(a+2c\right)\left(b+2c\right)}\le\frac{a+b+4c}{2}\)
Do vậy \(Q\ge\frac{11a+11b+12c}{3a+2b+2c+2a+3b+2c+\frac{a+b+4c}{2}}=2\)
Dấu "=" xảy ra khi và chỉ khi \(\left(a,b,c\right)=\left(1;1;\frac{3}{2}\right)\)
a) \(P=1957\)
b) \(S=19.\)