K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2016

1/1+2+1/1+2+3+1/1+2+3+4+...+1/1+2+3+...+99 +1/50 

=1/(2+1).2:2+1/(3+1).3:2+1/(4+1).4:2+..+1/(99+1).99:2+1/50

=2/2.3+2/3.4+2/4.5+..+2/99.100+1/50

=2(1/2.3+1/3.4+1/4.5+..+1/99.100)+1/50 

=2(1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100)+1/50 

=2(1/2-1/100)+1/50

=49/50+1/50=1 

5 tháng 3 2017

Sai rồi!!!!!!!!!!!!!!!!

15 tháng 3 2017

\(S=1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+....+\frac{1}{100}\left(1+2+3+....+100\right)\)

\(=1+\frac{1}{2}.\frac{2.3}{2}+\frac{1}{3}.\frac{3.4}{2}+.....+\frac{1}{100}.\frac{100.101}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+.....+\frac{101}{2}\)

\(=\frac{2+3+4+....+101}{2}\)

\(=\frac{\frac{101.102}{2}-1}{2}\)

\(=2575\)

Vậy \(S=2575\)

14 tháng 3 2017

\(1+\frac{1}{2}\left(1+2\right)+\frac{1}{3}\left(1+2+3\right)+.....+\frac{1}{100}\left(1+2+3+....+100\right)\)

\(=1+\frac{1}{2}.\frac{2\left(2+1\right)}{2}+\frac{1}{3}.\frac{3\left(3+1\right)}{2}+\frac{1}{4}.\frac{4\left(4+1\right)}{2}+.....+\frac{1}{100}.\frac{100\left(100+1\right)}{2}\)

\(=1+\frac{2+1}{2}+\frac{3+1}{2}+....+\frac{100+1}{2}\)

\(=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+....+\frac{101}{2}\)

\(=\frac{2+3+4+....+101}{2}\)

\(=\frac{\frac{101\left(101+1\right)}{2}-1}{2}=5150.5\)

5 tháng 3 2017

B = 1 bạn nhé , đúng 100000000000% luôn

5 tháng 11 2017

Cách tìm BCNN:

  1. Bước 1: Phân tích mỗi số ra thừa số nguyên tố.
  2. Bước 2: Chọn ra các thừa số nguyên tố chung và riêng.
  3. Bước 3: Lập tích các thừa số đã chọn, mỗi thừa số lấy với số mũ lớn nhất của nó. Tích đó là BCNN cần tìm.
15 tháng 2 2018

\(\text{A}=1+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{2^5}+...+\frac{100}{2^{100}}\)

\(\frac{1}{2}.\text{A}=\frac{1}{2}+\frac{3}{2^4}+\frac{4}{2^5}+...+\frac{99}{2^{100}}+\frac{100}{2^{101}}\)

\(=\left[\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right]-\frac{100}{2^{101}}\left(\text{do}\frac{3}{2^3}=\frac{1}{2^2}+\frac{1}{2^3}\right)\)

\(=\frac{\left[1-\left(\frac{1}{2}\right)^{101}\right]}{\left(1-\frac{1}{2}\right)}-\frac{100}{2^{101}}\)

\(=\frac{\left(2^{101}-1\right)}{2^{100}}-\frac{100}{2^{101}}\)

\(\Rightarrow\text{A}=\frac{\left(2^{101}-1\right)}{2^{99}}-\frac{100}{2^{101}}\)

P/s: Sai đâu thì bn sửa nhé.

15 tháng 2 2018

Bài này là ttoan nâng cao hả bạn