Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{100}}\)
\(\Rightarrow\dfrac{1}{2}P=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{101}}\)
\(\Rightarrow\dfrac{1}{2}P-P=\dfrac{1}{2^3}+\dfrac{1}{2^4}+...+\dfrac{1}{2^{101}}-\dfrac{1}{2^2}-\dfrac{1}{2^3}-...-\dfrac{1}{2^{100}}\)
\(\Rightarrow-\dfrac{1}{2}P=\dfrac{1}{2^{101}}-\dfrac{1}{2^2}\)
\(\Rightarrow P=\left(\dfrac{1}{2^{101}}-\dfrac{1}{2^2}\right):\left(-\dfrac{1}{2}\right)\)
B = \(\dfrac{3}{5}+\dfrac{3}{5^2}+\dfrac{3}{5^3}+...+\dfrac{3}{5^{2016}}\)
=> 5B = \(3+\dfrac{3}{5}+\dfrac{3}{5^2}+...+\dfrac{3}{5^{2015}}\)
=> 4B = \(3-\dfrac{3}{5^{2016}}\)
=> B = \(\dfrac{3-\dfrac{3}{5^{2016}}}{4}\)
@Nguyễn Đình Dũng có thể đưa ra kết quả chính xác được không?
e: \(=\left(\dfrac{18}{37}+\dfrac{19}{37}\right)+\left(\dfrac{8}{24}+\dfrac{2}{3}\right)-\dfrac{47}{24}=2-\dfrac{47}{24}=\dfrac{1}{24}\)
f: \(=-8\cdot\dfrac{1}{2}:\left(\dfrac{9}{4}-\dfrac{7}{6}\right)\)
\(=-4:\dfrac{13}{12}=\dfrac{-48}{13}\)
g: \(=\dfrac{4}{25}+\dfrac{11}{2}\cdot\dfrac{5}{2}-\dfrac{8}{4}=\dfrac{4}{25}+\dfrac{55}{4}-2=\dfrac{1191}{100}\)
2A=1-1/2+1/2^2-...+1/2^98-1/2^99
=>3A=1-1/2^100
=>\(A=\dfrac{2^{100}-1}{3\cdot2^{100}}\)
A=\(x.\dfrac{1}{5}+x.\dfrac{2}{3}-x.\dfrac{1}{4}\)
=\(x.\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{1}{4}\right)\)
=\(x.\dfrac{37}{60}\)
Thay x=\(\dfrac{1}{2}\) vào A ta được
A=\(\dfrac{1}{2}.\dfrac{37}{60}=\dfrac{37}{120}\)
\(=>C=\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot\dfrac{5}{4}.....\cdot\dfrac{101}{100}\)
\(C=\dfrac{3\cdot4\cdot5.......\cdot101}{2\cdot3\cdot4.........\cdot100}\)
\(C=\dfrac{101}{2}\)
\(P=1+\dfrac{1}{2}\left(1+2\right)+\dfrac{1}{3}\left(1+2+3\right)+...+\dfrac{1}{2016}\left(1+2+...+2016\right)\)\(=1+\dfrac{2.3}{2.2}+\dfrac{3.4}{3.2}+...+\dfrac{2016.2017}{2016.2}\)
\(=1+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)
\(=\dfrac{2}{2}+\dfrac{3}{2}+\dfrac{4}{2}+...+\dfrac{2017}{2}\)
\(=\dfrac{1}{2}\left(2+3+...+2017\right)\)
Đặt \(A=2+3+...+2017\)
\(=2017+2016+...+2\)
\(\Rightarrow2A=\left(2+2017\right)+\left(3+2016\right)+...+\left(2017+2\right)\) ( 2016 cặp số )
\(\Rightarrow2A=2019+2019+...+2019\) ( 2016 số )
\(\Rightarrow2A=4070304\)
\(\Rightarrow A=2035152\)
\(\Rightarrow P=1017576\)
Vậy...
P= 1+1/2.3+1/3.6+...+1/2016.2033136
P= 1+3/2+2+...+2017/2
P= 2/2+3/2+4/2+...+2017/2
P=\(\dfrac{2+3+4+...+2017}{2}\)
P= \(\dfrac{2035152}{2}\)
P= 1017576