K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2018

Nếu \(x=400\Rightarrow\left\{{}\begin{matrix}799=2x-1\\403=x+3\\1198=3x-2\\1203=3\left(x+1\right)\end{matrix}\right.\)( * )

Thay ( * ) vào R , ta được :

\(R=\left(2x-1\right)x^2-3x^4+\left(x+3\right)x+\left(3x-2\right)x^3-3\left(x+1\right)\)

\(=2x^3-x^2-3x^4+x^2+3x+3x^4-2x^3-3x-3\)

\(=\left(2x^3-2x^3\right)+\left(3x^4-3x^4\right)+\left(x^2-x^2\right)+\left(3x-3x\right)-3\)

\(=-3\)

Vậy \(R=-3\) tại \(x=400\)

8 tháng 10 2018

Cảm ơn bạn nha!hihi

15 tháng 9 2021

Giá trị của biểu thức C tại x=25 là C(25).

Theo định lý Bezout, C(25) = số dư khi chia C(x) cho x-25.

Ta dùng sơ đồ Hooc-ne để tìm số dư này:

 1-2627-47-77501-24
x=251-123-2011


Vậy: C(25)=1 

15 tháng 9 2021

làm cách khác đi

 

Bài 2: 

a: \(A=\left(x+1\right)^3+5=20^3+5=8005\)

b: \(B=\left(x-1\right)^3+1=10^3+1=1001\)

14 tháng 7 2016

\(B=x^3-3x^2+3x\)

\(=x^3-3x^21+3x1^2-1^3+1\)

\(=\left(x-1\right)^3+1\)

thay x=11 vào P ta đc:

\(B=\left(11-1\right)^3+1=1001\)

Vậy B=1001

\(A=x^3+3x^2+3x+6\)

\(=x^3+3x^2+3x+1+5\)

\(=\left(x+1\right)^3+5\)

Thay x = 19 vào biểu thức \(A=\left(x+1\right)^3+5\)ta được:

\(A=\left(19+1\right)^3+5=20^3+5=8000+5=8005\)

Vậy giá trị của biểu thức A tại x = 19 là 8005.

\(B=x^3-3x^2+3x\)

\(=x^3-3x^2+3x-1+1\)

\(=\left(x-1\right)^3+1\)

Thay x = 11 vào biểu thức \(B=\left(x-1\right)^3+1\)ta được:

\(B=\left(11-1\right)^3+1=10^3+1=1000+1=1001\)

Vậy giá trị của biểu thức B tại x = 11 là 1001.

29 tháng 12 2021

a: \(A=\dfrac{x^2-2x+2x^2+4x-3x^2-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-4}{\left(x-2\right)\left(x+2\right)}=\dfrac{2}{x+2}\)

5 tháng 1 2023

a, \(\dfrac{x}{x+2}\) + \(\dfrac{2x}{x-2}\) -\(\dfrac{3x^2-4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{x^2-4}\)

\(\dfrac{x}{x+2}+\dfrac{2x}{x-2}-\dfrac{3x^2+4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{x\left(x-2\right)+2x\left(x+2\right)-3x^2-4}{\left(x+2\right)\left(x-2\right)}\)

\(\dfrac{2x-4}{\left(x+2\right)\left(x-2\right)}=\dfrac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\dfrac{2}{x+2}\)

Có vài bước mình làm tắc á nha :>